


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,若,BC=7,CF=5,则CE的长为()A.1 B.2 C.2.5 D.32.在一次中学生田径运动会上,参加男子跳高的21名运动员的成绩如下表所示:成绩/m1.501.601.651.701.751.80人数235443则这些运动员成绩的中位数、众数分别为()A.1.65m,1.70m B.1.65m,1.65mC.1.70m,1.65m D.1.70m,1.70m3.实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b| B.1<–a<b C.1<|a|<b D.–b<a<–14.下列各数中是无理数的是()A.3 B. C. D.5.关于x的方程的解为正数,则k的取值范围是()A. B. C.且 D.且6.全球芯片制造已经进入纳米到纳米器件的量产时代.中国自主研发的第一台纳米刻蚀机,是芯片制造和微观加工最核心的设备之一.华为手机搭载了全球首款纳米制程芯片,纳米就是米.数据用科学记数法表示为()A. B. C. D.7.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.18.若m<n<0,那么下列结论错误的是()A.m﹣9<n﹣9 B.﹣m>﹣n C. D.2m<2n9.下列计算正确的是()A.x2•x3=x6 B.(xy)2=xy2 C.(x2)4=x8 D.x2+x3=x510.已知y2+my+1是完全平方式,则m的值是()A.2 B.±2 C.1 D.±111.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)12.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在中,,,以为圆心,任意长为半径画弧分别交、于点和,再分别以、为圆心,大于的长为半径画弧,两弧交于点,连结并延长交于点,则下列说法①是的平分线;②;③点在的中垂线上;正确的个数是______个.14.的绝对值是______.15.二次根式中,x的取值范围是.16.代数式的最大值为______,此时x=______.17.如图,在中,,,垂足分别为,,,交于点.请你添加一个适当的条件,使≌.添加的条件是:____.(写出一个即可)18.已知点A与B关于x轴对称,若点A坐标为(﹣3,1),则点B的坐标为____.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图1,若直线AD与BC相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD于F,证明:AD=EF+BD.(2)如图2,若直线AD与CB的延长线相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD交CD的延长线于F,探究:AD、EF、BD之间的数量关系,并证明.20.(8分)如图,,是边的中点,于,于.(1)求证:;(2)若,,求的周长.21.(8分)先化简,再求值:÷,其中x=.22.(10分)某校为了体育活动更好的开展,决定购买一批篮球和足球.据了解:篮球的单价比足球的单价多20元,用1000元购买篮球的个数与用800元购买足球的个数相同.(1)篮球、足球的单价各是多少元?(2)若学校打算购买篮球和足球的数量共100个,且购买的总费用不超过9600元,问最多能购买多少个篮球?23.(10分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.求证:BE=CF.24.(10分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC=2时,求证:△ABD≌△DCE;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.25.(12分)已知,.(1)若点的坐标为,请你画一个平面直角坐标系,标出点的位置;(2)求出的算术平方根.26.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽气车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少方元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?
参考答案一、选择题(每题4分,共48分)1、B【分析】由全等三角形的性质可知,然后利用即可求解.【详解】∵BC=7,CF=5故选:B.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的性质是解题的关键.2、C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:共21名学生,中位数落在第11名学生处,第11名学生的跳高成绩为1.70m,故中位数为1.70;
跳高成绩为1.65m的人数最多,故跳高成绩的众数为1.65;
故选:C.【点睛】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.3、A【解析】试题分析:由图可知:故A项错误,C项正确;故B、D项正确.故选A.考点:1、有理数大小比较;2、数轴.4、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、3是整数,是有理数,故选项错误;
B、是无理数,选项正确.
C、=2是整数,是有理数,选项错误;D、是分数,是有理数,故选项错误;
故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5、C【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【详解】解:分式方程去分母得:,解得:,根据题意得:,且,解得:,且.故选C.【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.6、B【分析】由题意根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、B【解析】如图,过点P作PC垂直AO于点C,PD垂直BO于点D,根据角平分线的性质可得PC=PD,因∠AOB与∠MPN互补,可得∠MPN=∠CPD,即可得∠MPC=∠DPN,即可判定△CMP≌△NDP,所以PM=PN,(1)正确;由△CMP≌△NDP可得CM=CN,所以OM+ON=2OC,(2)正确;四边形PMON的面积等于四边形PCOD的面积,(3)正确;连结CD,因PC=PD,PM=PN,∠MPN=∠CPD,PM>PC,可得CD≠MN,所以(4)错误,故选B.8、C【解析】A:等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可;B:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可;C:由倒数的定义即可得出结论;D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.【详解】因为m<n<0,所以m﹣9<n﹣9,A正确;因为m<n<0,所以﹣m>﹣n,B正确;因为m<n<0,所以,C错误;因为m<n<0,所以2m<2n,D正确.故选C.【点睛】本题考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.9、C【分析】根据同底数幂的乘法法则、积的乘方、幂的乘方、合并同类项.【详解】解:A.x2•x3=x5,故原题计算错误;B.(xy)2=x2y2,故原题计算错误;C.(x2)4=x8,故原题计算正确;D.x2和x3不是同类项,故原题计算错误.故选C.【点睛】本题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则.10、B【分析】完全平方公式:a1±1ab+b1的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是y和1的平方,那么中间项为加上或减去y和1的乘积的1倍.【详解】∵(y±1)1=y1±1y+1,∴在y1+my+1中,my=±1y,解得m=±1.故选B.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的1倍,就构成了一个完全平方式.注意积的1倍的符号,避免漏解.11、A【分析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.12、B【详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图二、填空题(每题4分,共24分)13、1【分析】根据角平分线的做法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确.【详解】解:①根据角平分线的做法可得AD是∠BAC的平分线,说法①正确;
②∵∠C=90°,∠B=10°,
∴∠CAB=60°,
∵AD平分∠CAB,
∴∠DAB=10°,
∴∠ADC=10°+10°=60°,
因此∠ADC=60°正确;
③∵∠DAB=10°,∠B=10°,
∴AD=BD,
∴点D在AB的中垂线上,故③说法正确,
故答案为:1.【点睛】此题主要考查了角平分线的做法以及垂直平分线的判定,熟练根据角平分线的性质得出∠ADC度数是解题关键.14、【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:-的绝对值是.故答案为.【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.15、.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.16、2±1.【分析】根据算术平方根的性质可以得到≥0,即最小值是0,据此即可确定原式的最大值.【详解】∵0,∴当x=±1时,有最小值0,则当x=±1,2有最大值是2.故答案为:2,±1.【点睛】本题考查了二次根式性质,理解≥0是关键.17、AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,
∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE=90°,∴∠BAD=∠BCE,
所以根据AAS添加AF=CB或EF=EB;
根据ASA添加AE=CE.
可证△AEF≌△CEB.
故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.18、(﹣3,﹣1)【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】解:点A与点B关于x轴对称,点A的坐标为(﹣3,1),则点B的坐标是(﹣3,﹣1).故答案为(﹣3,﹣1).【点睛】本题考查关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题的关键.三、解答题(共78分)19、(1)见解析;(2)AD+BD=EF,理由见解析.【分析】(1)将△ABD绕点A逆时针方向旋转90°至△ACG,得到BD=CG,延长GC交DE于点H,证明四边形ADHG为正方形,则AD=GH,证明△DEF≌△DCH,得到EF=CH,则得出结论;(2)作CN⊥AM,证明△DEF≌△CDN,得到EF=DN,证明△ADB≌△CNA.得到BD=AN.则AD+AN=DN=EF.【详解】证明:(1)∵AB=AC,∠BAC=90°,∴△ABC为等腰直角三角形,如图1,将△ABD绕点A逆时针方向旋转90°至△ACG,∴BD=CG,延长GC交DE于点H,∵AD⊥BE,∠DAG=∠AGC=90°,AD=AG,∴四边形ADHG为正方形,∴∠DHC=90°,∴AD=GH,∵DE=DC,EF⊥CD,∠EDF=∠CDH,∴△DEF≌△DCH(AAS),∴EF=CH,∴AD=GH=GC+CH=EF+BD;(2)AD+BD=EF,理由如下:作CN⊥AM,∵AD⊥BE,∴∠EDF+∠ADC=90°,∵∠DCN+∠ADC=90°,∴∠EDF=∠DCN,∵∠F=∠DNC=90°,DE=DC,∴△DEF≌△CDN(AAS),∴EF=DN,∵∠BAC=90°,∴∠DAB+∠NAC=90°,又∵∠DAB+∠DBA=90°,∴∠NAC=∠DBA,∵AB=AC,∴△ADB≌△CNA(AAS).∴BD=AN.∴AD+AN=DN=EF,∴AD+BD=EF.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,旋转的性质,正确作出辅助线是解题的关键.20、(1)详见解析;(2)1.【分析】(1)先利用等腰三角形等边对等角得出∠B=∠C,再利用AAS证明△BDE≌△CDF,即可得出结论;(2)先证明△ABC是等边三角形,然后根据含30°的直角三角形的性质求出等边三角形的边长,则周长可求.【详解】(1)证明:∵AB=AC∴∠B=∠C,∵DE⊥AB于E,DF⊥AC于F,∴∠BED=∠CFD=90°,∵D是BC边的中点,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS)∴BE=CF;(2)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,∵∠BED=∠CFD=90°,∴∠BDE=∠CDF=30°,∴BD=2BE=2=CD,∴BC=4,∴△ABC周长=4×3=1.【点睛】本题主要考查全等三角形的判定及性质,等边三角形的判定及性质,掌握全等三角形的判定及等边三角形的判定方法是解题的关键.21、,.【分析】先将分式的分子和分母分解因式,将分式约分化简得到最简结果,再将未知数的值代入计算即可.【详解】,=,当x=时,原式=.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,再将未知数的值代入求值即可.22、(1)篮球的单价为100元,则足球的单价为80元;(2)最多能买80个篮球【分析】(1)设篮球的、足球的单价分别为元、元,根据题意找到等量关系构造出分式方程即可解决问题.(2)设购买个篮球,根据题意找到不等量关系构造出不等式即可解决最值问题.【详解】解:(1)设篮球的单价为元,则足球的单价为元,依题意得:解得:经检验是分式方程的根且符合题意,∴答:篮球的单价为100元,则足球的单价为80元.(2)设最多能买个篮球,依题意得:解得:答:最多能买80个篮球.【点睛】本题考查了分式方程的应用、一元一次不等式的应用等知识,解题的关键是理解题意、学会正确寻找等量关系以及不等量关系,从而构造出方程或不等式解决问题,属于中等题.23、证明见解析.【解析】试题分析:根据等腰三角形的性质可得∠CAD=∠BAD,由等量关系可得∠CAD=∠EAB,有SAS可证△ACF≌△ABE,再根据全等三角形的对应边相等即可得证.试题解析:证明:∵AB=AC,点D是BC的中点,∴∠CAD=∠BAD.又∵∠EAB=∠BAD,∴∠CAD=∠EAB.在△ACF和△ABE中,∵AC=AB,∠CAF=∠BAE,AF=AE,∴△ACF≌△ABE(SAS),∴BE=CF.点睛:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度中等,注意掌握数形结合思想的应用.24、(1)25°;小;(2)见解析;(3)当∠BDA=110°或80°时,△ADE是等腰三角形.【分析】(1)根据三角形内角和定理,将已知数值代入即可求出∠BAD,根据点D的运动方向可判定∠BDA的变化情况;(2)假设△ABD≌△DCE,利用全等三角形的对应边相等得出AB=DC=2,即可求得答案;
(3)假设△ADE是等腰三角形,分为三种情况:①当AD=AE时,∠ADE=∠AED=40°,根据∠AED>∠C,得出此时不符合;②当DA=DE时,求出∠DAE=∠DEA=70°,求出∠BAC,根据三角形的内角和定理求出∠BAD,根据三角形的内角和定理求出∠BDA即可;③当EA=ED时,求出∠DAC,求出∠BAD,根据三角形的内角和定理求出∠ADB.【详解】(1)∠BAD=180°-∠ABD-∠BDA=180°-40°-115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2)∵∠EDC+∠ADE=∠DAB+∠B,∠B=∠EDA=40°∴∠EDC=∠DAB∵AB=AC∴∠B=∠C在△ABD和△DCE中,∴△ABD≌△DCE(ASA)(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=×(180°-40°)=70°,∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;∴∠BDA=180°-30°-40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴∠BDA=180°-60°-40°=80°;∴当∠BDA=110°或80°时,△ADE是等腰三角形.【点睛】本题主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省醴陵市第三中学2025年初三第一次大联考语文试题含解析
- 长沙医学院《岩土测试技术》2023-2024学年第二学期期末试卷
- 山东省青岛43中2024-2025学年初三暑假末结业考试物理试题含解析
- 碳酸饮料市场细分策略与目标群体定位考核试卷
- 木材切削振动抑制技术考核试卷
- 煤炭清洁利用考核试卷
- 商务保险培训(寿险的意义和功用)
- 搪瓷企业产品研发与市场适应性考核试卷
- 塑料鞋制造与智能制造技术考核试卷
- 油气田设备故障诊断与预测性维护考核试卷
- 2025春夏童装童鞋行业趋势白皮书
- 产品研发进度管理与风险评估方案
- 第6课 隋唐时期的中外文化交流 【公开课一等奖创新教学设计】-【教学评一体化】大单元整体教学
- 幼教培训课件:《幼儿园思维共享的组织与实施》
- DB37-T 1639.18-2021 山东省重点工业产品用水定额 第18部分:金属矿采选业重点工业产品
- 青贮饲料购销合同的注意事项
- 2024-2025学年广东省广州市越秀区九年级(上)期末英语试卷
- 2025年全球及中国汽车座椅腿托行业头部企业市场占有率及排名调研报告
- 水平衡测试或用水合理性分析报告范文
- 《电子线路CAD教程-基于Altium Designer平台》课件第7章 PCB设计基础
- 2025年保密知识试题库附参考答案(精练)
评论
0/150
提交评论