



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若与互为共轭复数,则()A.0 B.3 C.-1 D.43.的展开式中的常数项为()A.-60 B.240 C.-80 D.1804.已知集合,,若,则实数的值可以为()A. B. C. D.5.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为()A. B. C. D.6.已知复数z满足,则在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.偶函数关于点对称,当时,,求()A. B. C. D.8.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为 B. C.的共轭复数为 D.为纯虚数9.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为()A. B.C. D.10.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好;③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“,”的充要条件;其中真命题的个数为()A.4 B.3 C.2 D.111.已知复数满足,则()A. B.2 C.4 D.312.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为等差数列,为其前n项和,若,,则_______.14.设变量,满足约束条件,则目标函数的最小值为______.15.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________.16.若向量与向量垂直,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.18.(12分)已知函数,其中,为自然对数的底数.(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点.19.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.20.(12分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.21.(12分)如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.22.(10分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
计算,得到答案.【题目详解】根据题意,故,表示的复数在第一象限.故选:.【答案点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.2、C【答案解析】
计算,由共轭复数的概念解得即可.【题目详解】,又由共轭复数概念得:,.故选:C【答案点睛】本题主要考查了复数的运算,共轭复数的概念.3、D【答案解析】
求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【题目详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【答案点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.4、D【答案解析】
由题意可得,根据,即可得出,从而求出结果.【题目详解】,且,,∴的值可以为.故选:D.【答案点睛】考查描述法表示集合的定义,以及并集的定义及运算.5、A【答案解析】
先通过降幂公式和辅助角法将函数转化为,再求最值.【题目详解】已知函数f(x)=sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【答案点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.6、A【答案解析】
设,由得:,由复数相等可得的值,进而求出,即可得解.【题目详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【答案点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.7、D【答案解析】
推导出函数是以为周期的周期函数,由此可得出,代值计算即可.【题目详解】由于偶函数的图象关于点对称,则,,,则,所以,函数是以为周期的周期函数,由于当时,,则.故选:D.【答案点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.8、D【答案解析】
将复数整理为的形式,分别判断四个选项即可得到结果.【题目详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【答案点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.9、A【答案解析】
由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【题目详解】椭圆的离心率:,(c为半焦距;a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,,故选:A【答案点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.10、C【答案解析】
①根据线性相关性与r的关系进行判断,
②根据相关指数的值的性质进行判断,
③根据方差关系进行判断,
④根据点满足回归直线方程,但点不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断.【题目详解】①若两个随机变量的线性相关性越强,则相关系数r的绝对值越接近于1,故①正确;
②用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好,故②错误;
③若统计数据的方差为1,则的方差为,故③正确;
④因为点满足回归直线方程,但点不一定就是这一组数据的中心点,即,不一定成立,而回归直线必过样本中心点,所以当,时,点必满足线性回归方程;因此“满足线性回归方程”是“,”必要不充分条件.故④错误;
所以正确的命题有①③.
故选:C.【答案点睛】本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.11、A【答案解析】
由复数除法求出,再由模的定义计算出模.【题目详解】.故选:A.【答案点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.12、B【答案解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【题目详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B【答案点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】试题分析:因为是等差数列,所以,即,又,所以,所以.故答案为1.【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,,,,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.14、-8【答案解析】
通过约束条件,画出可行域,将问题转化为直线在轴截距最大的问题,通过图像解决.【题目详解】由题意可得可行域如下图所示:令,则即为在轴截距的最大值由图可知:当过时,在轴截距最大本题正确结果:【答案点睛】本题考查线性规划中的型最值的求解问题,关键在于将所求最值转化为在轴截距的问题.15、【答案解析】
利用正弦定理边化角可得,从而可得,进而求解.【题目详解】由,由正弦定理可得,即,整理可得,又因为,所以,因为,所以,故答案为:【答案点睛】本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.16、0【答案解析】
直接根据向量垂直计算得到答案.【题目详解】向量与向量垂直,则,故.故答案为:.【答案点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;(2).【答案解析】
(1)对a分三种情况讨论求出函数的单调性;(2)对a分三种情况,先求出每一种情况下函数f(x)的最小值,再解不等式得解.【题目详解】(1),当时,,在上单调递增;当时,,,,,∴在上单调递减,在上单调递增;当时,,,,,∴在上单调递减,在上单调递增.综上:当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)可知:当时,,∴成立.当时,,,∴.当时,,,∴,即.综上.【答案点睛】本题主要考查利用导数研究函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、见解析【答案解析】
(1)当时,函数,其定义域为,则,设,,易知函数在上单调递增,且,所以当时,,即;当时,,即,所以函数在上单调递减,在上单调递增,所以函数在处取得极小值,为,无极大值.(2)由题可得函数的定义域为,,设,,显然函数在上单调递增,当时,,,所以函数在内有一个零点,所以函数有且仅有一个零点;当时,,,所以函数有且仅有一个零点,所以函数有且仅有一个零点;当时,,,因为,所以,,又,所以函数在内有一个零点,所以函数有且仅有一个零点.综上,函数有且仅有一个零点.19、(1);(2)是定值,.【答案解析】
(1)设出M的坐标为,采用直接法求曲线的方程;(2)设AB的方程为,,,,求出AT方程,联立直线方程得D点的坐标,同理可得E点的坐标,最后利用向量数量积算即可.【题目详解】(1)设动点M的坐标为,由知∥,又在直线上,所以P点坐标为,又,点为的中点,所以,,,由得,即;(2)设直线AB的方程为,代入得,设,,则,,设,则,所以AT的直线方程为即,令,则,所以D点的坐标为,同理E点的坐标为,于是,,所以,从而,所以是定值.【答案点睛】本题考查了直接法求抛物线的轨迹方程、直线与抛物线位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.20、,;.【答案解析】
由,公差,有,,成等比数列,所以,解得.进而求出数列,的通项公式;当时,由,所以,当时,由,,可得,进而求出前项和.【题目详解】解:由题意知,,公差,有1,,成等比数列,所以,解得.所以数列的通项公式.数列的公比,其通项公式.当时,由,所以.当时,由,,两式相减得,所以.故所以的前项和,.又时,,也符合上式,故.【答案点睛】本题主要考查等差数列和等比数列的概念,通项公式,前项和公式的应用等基础知识;考查运算求解能力,方程思想,分类讨论思想,应用意识,属于中档题.21、(1)见解析;(2)【答案解析】
(1)取的中点,证明,则平面平面,则可证平面.(2)利用,是平面的高,容易求.,再求,则点到平面的距离可求.【题目详解】解:(1)如图:取的中点,连接、.在中,是的中点,是的中点,平面平面,故平面在直角梯形中,,且,∴四边形是平行四边形,,同理平面又,故平面平面,又平面平面.(2)是圆的直径,点是圆上异于、的一点,又∵平面平面,平面平面平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盐城工业职业技术学院《水资源利用与保护课程设计》2023-2024学年第一学期期末试卷
- 上海科技大学《科技文献检索与科技论文写作》2023-2024学年第一学期期末试卷
- 宁夏职业技术学院《时装表演艺术1》2023-2024学年第一学期期末试卷
- 广东轻工职业技术学院《影视照明技术》2023-2024学年第一学期期末试卷
- 阜阳职业技术学院《资源勘查工程专业外语》2023-2024学年第一学期期末试卷
- 中央戏剧学院《构成艺术》2023-2024学年第一学期期末试卷
- 2025至2030纯棉帆布行业发展趋势分析与未来投资战略咨询研究报告
- 长垣烹饪职业技术学院《第二外国语》2023-2024学年第一学期期末试卷
- 河北大学《纺织服装市场营销导论》2023-2024学年第一学期期末试卷
- 重庆五一职业技术学院《专业英语与文献阅读》2023-2024学年第一学期期末试卷
- 育婴员考试题型及答案
- 科室建立血糖管理制度
- 四川成都东方广益投资有限公司下属企业招聘笔试题库2025
- 高中英语必背3500单词表完整版
- 医师职业素养课件
- 电网工程设备材料信息参考价2025年第一季度
- Python试题库(附参考答案)
- 高校实验室安全基础学习通超星期末考试答案章节答案2024年
- 2023年广东初中学业水平考试生物试卷真题(含答案)
- SCR脱硝反应器尺寸修改后
- 混凝土强度增长曲线
评论
0/150
提交评论