2022届黑龙江省齐齐哈尔市普通高中联谊校数学高二第二学期期末调研试题含解析_第1页
2022届黑龙江省齐齐哈尔市普通高中联谊校数学高二第二学期期末调研试题含解析_第2页
2022届黑龙江省齐齐哈尔市普通高中联谊校数学高二第二学期期末调研试题含解析_第3页
2022届黑龙江省齐齐哈尔市普通高中联谊校数学高二第二学期期末调研试题含解析_第4页
2022届黑龙江省齐齐哈尔市普通高中联谊校数学高二第二学期期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,统计结果如下表:年龄手机品牌华为苹果合计30岁以上40206030岁以下(含30岁)152540合计5545100附:P()0.100.050.0100.0012.7063.8416.63510.828根据表格计算得的观测值,据此判断下列结论正确的是()A.没有任何把握认为“手机品牌的选择与年龄大小有关”B.可以在犯错误的概率不超过0.001的前提下认为“手机品牌的选择与年龄大小有关”C.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”D.可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小无关”2.在中,,,.将绕旋转至另一位置(点转到点),如图,为的中点,为的中点.若,则与平面所成角的正弦值是()A. B. C. D.3.参数方程(θ∈R)表示的曲线是()A.圆 B.椭圆 C.双曲线 D.抛物线4.若,则,.设一批白炽灯的寿命(单位:小时)服从均值为1000,方差为400的正态分布,随机从这批白炽灯中选取一只,则()A.这只白炽灯的寿命在980小时到1040小时之间的概率为0.8186B.这只白炽灯的寿命在600小时到1800小时之间的概率为0.8186C.这只白炽灯的寿命在980小时到1040小时之间的概率为0.9545D.这只白炽灯的寿命在600小时到1800小时之间的概率为0.95455.“”是“方程表示双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设为整数,若a和b被m除得余数相同,则称a和b对模m同余.记为.若,,则b的值可以是()A.2019 B.2020 C.2021 D.20227.抛物线的焦点到双曲线的渐近线的距离为()A. B. C.1 D.8.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格不及格合计很少使用手机20525经常使用手机101525合计302050则有()的把握认为经常使用手机对数学学习成绩有影响.参考公式:,其中0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.97.5% B.99% C.99.5% D.99.9%9.将点的极坐标化成直角坐标是(

)A. B. C. D.10.下列命题中:①“x>y”是“x②已知随机变量X服从正态分布N3,  ③线性回归直线方程y=bx+④命题“∃x∈R,x2+x+1>0其中正确的个数是()A.1 B.2 C.3 D.411.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为10,14,则输出的()A.6 B.4 C.2 D.012.袋中共有10个除了颜色外完全相同的球,其中有6个白球,4个红球,从袋中任取2个球,则所取的2个球中恰有1个白球,1个红球的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为抛物线:的焦点,过作两条互相垂直的直线,,直线与交于、两点,直线与交于、两点,则的最小值为__________.14.请列举用0,1,2,3这4个数字所组成的无重复数字且比230大的所有三位偶数______.15.若命题“,使得成立”是假命题,则实数的取值范围是_______.16.若=,则x的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了了解学生的身体素质情况,现从某校学生中随机抽取10人进行体能测试,测试的分数(百分制)如茎叶图所示,根据有关国家标准成绩不低于79分的为优秀,将频率视为概率.(1)另从我校学生中任取3人进行测试,求至少有1人成绩是“优秀”的概率;(Ⅱ)从抽取的这10人(成绩见茎叶图)中随机选取3人,记X表示测试成绩为“优秀”的学生人数,求X的分布列和数学期望.18.(12分)如图,在四棱锥中,底面为菱形,,,且.(1)求证:平面平面;(2)若,求二面角的余弦值.19.(12分)如图,在中,,角的平分线交于点,设,其中是直线的倾斜角.(1)求;(2)若,求的长20.(12分)如图,在四棱锥中,为矩形,是以为直角的等腰直角三角形,平面⊥平面.(1)证明:平面⊥平面;(2)为直线的中点,且,求二面角的余弦值.21.(12分)每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查,该调查机构从该校随机抽查了名不同性别的学生,现已得知人中喜爱阅读的学生占,统计情况如下表喜爱不喜爱合计男生女生合计(1)完成列联表,根据以上数据,能否有的把握认为是否喜爱阅读与被调查对象的性别有关?请说明理由:(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取位学生进行调查,求抽取的位学生中至少有人喜爱阅读的概率,(以下临界值及公式仅供参考),22.(10分)某公司生产一种产品,每年投入固定成本万元.此外,每生产件这种产品还需要增加投入万元.经测算,市场对该产品的年需求量为件,且当出售的这种产品的数量为(单位:百件)时,销售所得的收入约为(万元).(1)若该公司这种产品的年产量为(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量的函数;(2)当该公司的年产量为多少时,当年所得利润最大?最大为多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据的意义判断.【详解】因为,所以可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”,故选:C.【点睛】本题考查独立性检验,属于简单题.2、B【解析】

由题意画出图形,证明平面,然后找出与平面所成角,求解三角形得出答案.【详解】解:如图,由题意可知,,又,,,即,,分别为,的中点,.,,而,平面.延长至,使,连接,则与全等,可得平面.为与平面所成角,在中,由,,可得.故选:B.【点睛】本题考查直线与平面所成角,考查空间想象能力与思维能力,属于中档题.3、A【解析】

利用平方关系式消去参数可得即可得到答案.【详解】由可得,所以,化简得.故选:A【点睛】本题考查了参数方程化普通方程,考查了平方关系式,考查了圆的标准方程,属于基础题.4、A【解析】

先求出,,再求出和,即得这只白炽灯的寿命在980小时到1040小时之间的概率.【详解】∵,,∴,,所以,,∴.故选:A【点睛】本题主要考查正态分布的图像和性质,考查指定区间的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、A【解析】

若方程表示双曲线,则有,再根据充分条件和必要条件的定义即可判断.【详解】因为方程表示双曲线等价于,所以“”,是“方程表示双曲线”的充分不必要条件,故选A.【点睛】本题考查充分条件与必要条件以及双曲线的性质,属于基础题.6、A【解析】

先利用二项式定理将表示为,再利用二项式定理展开,得出除以的余数,结合题中同余类的定义可选出合适的答案.【详解】,则,所以,除以的余数为,以上四个选项中,除以的余数为,故选A.【点睛】本题考查二项式定理,考查数的整除问题,解这类问题的关键就是将指数幂的底数表示为与除数的倍数相关的底数,结合二项定理展开式可求出整除后的余数,考查计算能力与分析问题的能力,属于中等题.7、B【解析】抛物线的焦点为:,双曲线的渐近线为:.点到渐近线的距离为:.故选B.8、C【解析】

根据2×2列联表,求出的观测值,结合题中表格数据即可得出结论.【详解】由题意,可得:,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响.故选C.【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.9、A【解析】本题考查极坐标与直角坐标的互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A10、B【解析】

①充要条件即等价条件,不等价则不充要;②根据正态分布的特征,且μ=3,得到P(X≤0)=P(X≥6)=1-P(X≤6),判断其正确;③根据回归直线的特征,得出其正确;④写出命题p的否定¬p,判定其错误;最后得出结果.【详解】对于①,由x>y≥0,可以推出x2>y2,充分性成立,x2对于②,根据题意得P(X≤0)=P(X≥6)=1-P(X≤6)=1-0.72=0.28,所以②正确;对于③,根据回归直线一定会过样本中心点,所以③正确;对于④,命题“∃x∈R,x2所以正确命题有两个,故选B.【点睛】该题考查的是有关判断命题的正误的问题,涉及到的知识点有充要条件,正态分布,含有一个量词的命题的否定,回归直线方程的特征,属于简单题目.11、C【解析】

由程序框图,先判断,后执行,直到求出符合题意的.【详解】由题意,可知,,满足,不满足,则,满足,满足,则,满足,满足,则,满足,不满足,则,不满足,输出.故选C.【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.12、C【解析】

从袋中任取2个球,基本事件总数n.所取的2个球中恰有1个白球,1个红球包含的基本事件个数m,利用古典概型公式可得所求.【详解】袋中共有10个除了颜色外完全相同的球,其中有6个白球,4个红球,从袋中任取2个球,基本事件总数n1.所取的2个球中恰有1个白球,1个红球包含的基本事件个数m24,∴所取的2个球中恰有1个白球,1个红球的概率为p.故选C.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、16.【解析】由题意可知抛物线的焦点,准线为设直线的解析式为∵直线互相垂直∴的斜率为与抛物线的方程联立,消去得设点由跟与系数的关系得,同理∵根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离∴,同理∴,当且仅当时取等号.故答案为16点睛:(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.利用定义可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径;(2)圆锥曲线中的最值问题,可利用基本不等式求解,但要注意不等式成立的条件.14、310,302,320,312【解析】

根据题意,分别讨论个位数字是0和个数数字是2两种情况,即可得出结果.【详解】由0,1,2,3这4个数字所组成的无重复数字且比230大的所有三位偶数有:(1)当个位数字是0时,数字可以是:310,320;(2)当个数数字是2时,数字可以是:302,312.故答案为:310,302,320,312.【点睛】本题主要考查简单的排列问题,只需按要求列举即可,属于基础题型.15、【解析】

根据原命题为假,可得,都有;当时可知;当时,通过分离变量可得,通过求解最值得到结果.【详解】由原命题为假可知:,都有当时,,则当时,又,当且仅当时取等号综上所述:本题正确结果:【点睛】本题考查根据命题的真假性求解参数范围,涉及到恒成立问题的求解.16、4或9.【解析】分析:先根据组合数性质得,解方程得结果详解:因为=,所以因此点睛:组合数性质:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)的分布列见解析,期望【解析】试题分析:(1)由题意结合对立事件的概率公式可得至少有1人成绩是“优秀”的概率是;(2)的取值可能为0,1,2,3,结合超几何分布的概率公式可得函数的分布列,然后可求得X的数学期望为.试题解析:(1)由茎叶图知,抽取的10人中成绩是“优秀”的有6人,频率为,依题意,从我校学生中任选1人,成绩是“优秀”的概率为,记事件表示“在我校学生中任选3人,至少1人成绩是优良”,则(2)由题意可得,的取值可能为0,1,2,3,,,0123,∴的分布列为:期望点睛:(1)求解本题的关键在于:①从茎叶图中准确提取信息;②明确随机变量X服从超几何分布.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.18、(1)见解析;(2).【解析】

(1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角.【详解】(1)证明:取中点,连结,,,因为底面为菱形,,所以.因为为的中点,所以.在△中,,为的中点,所以.设,则,,因为,所以.在△中,,为的中点,所以.在△和△中,因为,,,所以△△.所以.所以.因为,平面,平面,所以平面.因为平面,所以平面平面.(2)因为,,,平面,平面,所以平面.所以.由(1)得,,所以,,所在的直线两两互相垂直.以为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,,所以,,,设平面的法向量为,则令,则,,所以.设平面的法向量为,则令,则,,所以.设二面角为,由于为锐角,所以.所以二面角的余弦值为.【点睛】本题考查线面垂直判定定理、面面垂直判定定理以及利用空间向量求二面角,考查基本分析论证与求解能力,属中档题.19、(1);(2)5.【解析】试题分析:(1)由直线的倾斜角概念可得,,由二倍角公式可求得,,故而可求得;(2)由正弦定理得,由得,联立方程组得结果.试题解析:(1)∵是直线的倾斜角,,又,故,,则,∴,.(2)由正弦定理,得,即,∴,又,∴,由上两式解得,又由,得,∴.20、(Ⅰ)见解析;(Ⅱ).【解析】

(Ⅰ)由为矩形,得,再由面面垂直的性质可得平面,则,结合,由线面垂直的判定可得平面,进一步得到平面平面;(Ⅱ)取中点O,分别以所在直线为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值,再由平方关系求得二面角的正弦值.【详解】(Ⅰ)证明:为矩形,,平面平面,平面平面,平面,则,又,,平面,而平面,平面平面;(Ⅱ)取中点O,分别以所在直线为轴建立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论