版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列运算正确的是()A.2a2+a=3a3 B.(-a)3•a2=-a6 C.(-a)2÷a=a D.(2a2)3=6a62.下列线段中不能组成三角形的是()A.2,2,1 B.2,3,5 C.3,3,3 D.4,3,53.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=()A.25cm B.45cm C.50cm D.55cm4.化简12的结果是()A.43 B.23 C.32 D.265.若是三角形的三边长,则式子的值(
).A.小于0 B.等于0 C.大于0 D.不能确定6.在数学课上,同学们在练习画边上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A. B.C. D.7.在中,,,第三边的取值范围是()A. B. C. D.8.已知=3,则代数式的值是()A. B. C. D.9.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张.()A.2 B.3 C.4 D.610.如图,直线与直线交于点,则方程组解是()A. B. C. D.11.如图,在中,点、、的坐标分别为、和,则当的周长最小时,的值为()A. B. C. D.12.点关于轴对称的点的坐标是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在中,是的垂直平分线,且分别交于点和,,则等于_______度.14.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为_____.15.在中,,为斜边的中点,,则_____.16.在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,则EF的长是_____.17.计算=____________.18.如图,已知平分,且,若,则的度数是__________.三、解答题(共78分)19.(8分)已知,其中是一个含的代数式.(1)求化简后的结果;(2)当满足不等式组,且为整数时,求的值.20.(8分)(1)在中,,(如图1),与有怎样的数量关系?试证明你的结论.(2)图2,在四边形中,相于点,,,,,求长.21.(8分)如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.(1)当时,判断的形状,并说明理由;(2)求的度数;(3)请你探究:当为多少度时,是等腰三角形?22.(10分)先化简,再从1,0,-1,2中任选一个合适的数作为的值代入求值.23.(10分)图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:方法一:;方法二:.(2)(m+n),(m−n),mn这三个代数式之间的等量关系为___(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x−y的值.24.(10分)一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前到达目的地,设前一个小时的行驶速度为(1)直接用的式子表示提速后走完剩余路程的时间为(2)求汽车实际走完全程所花的时间.(3)若汽车按原路返回,司机准备一半路程以的速度行驶,另一半路程以的速度行驶(),朋友提醒他一半时间以的速度行驶,另一半时间以的速度行驶更快,你觉得谁的方案更快?请说明理由.25.(12分)因式分解:(1)(2)26.已知a,b,c为△ABC的三边长,且.(1)求a,b值;(2)若△ABC是等腰三角形,求△ABC的周长.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:A、2a2与a不是同类项,不能合并,错误;B、(-a)3•a2=-a5,错误;C、(-a)2÷a=a,正确;D、(2a2)3=8a6,错误;故选C.考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.2、B【分析】根据三角形的三边关系依次分析各项即可判断.【详解】A.,C.,D.,均能组成三角形,不符合题意;B.,不能组成三角形,符合题意,故选B.【点睛】本题考查的是三角形的三边关系,解答本题的关键是熟练掌握三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边.3、C【分析】由垂直平分线的性质可求得AD=BD,则△ACD的周长可化为AC+CD+BD,即AC+BC,可求得答案.【详解】解:∵DE为AB的垂直平分线,∴AD=BD,∴AC+CD+AD=AC+CD+BD=AC+BC=50,故选:C.【点睛】本题考查线段垂直平分线的知识,解题的关键是掌握线段垂直平分线的性质:线段垂直平分线上的点到这条线段两端点的距离相等.4、B【解析】试题解析:12=故选B.考点:二次根式的化简.5、A【分析】先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.【详解】解:=(a-b+c)(a-b-c)根据三角形两边之和大于第三边,两边之差小于第三边,(a-c+b)(a-c-b)<0故选A.【点睛】本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.6、C【分析】根据三角形的高的概念直接观察图形进行判断即可得出答案.【详解】解:AC边上的高应该是过B作BE⊥AC,符合这个条件的是C,A,B,D都不过B点,故错误;故选C.【点睛】本题主要考查了利用基本作图做三角形高的方法,正确的理解三角形高的定义是解决问题的关键.7、D【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边的边长的取值范围.【详解】∵AB=3,AC=5,∴5-3<BC<5+3,即2<BC<8,故选D.【点睛】考查了三角形三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握三角形的三边关系是解题关键.8、D【分析】由得出,即,整体代入原式,计算可得.【详解】,,,则原式.故选:.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.9、B【分析】拼成的大长方形的面积是(a+1b)(a+b)=a1+3ab+1b1,即需要一个边长为a的正方形,1个边长为b的正方形和3个C类卡片的面积是3ab.【详解】(a+1b)(a+b)=a1+3ab+1b1.则需要C类卡片3张.故选:B.【点睛】本题考查了多项式乘多项式的运算,需要熟练掌握运算法则并灵活运用,利用各个面积之和等于总的面积也比较关键.10、B【分析】根据一次函数与二元一次方程组的关系解答即可.【详解】∵直线与直线交于点,∴方程组即的解是.故选B.【点睛】本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.11、B【分析】作点B关于x轴的对称点D,连接CD交x轴于点A,因为BC的长度不变,所以根据轴对称的性质可知此时的周长最小.【详解】作点B关于x轴的对称点D,连接CD交x轴于点A,此时的周长最小.作CE⊥y轴于点E.∵B(0,1),∴D(0,-1),∴OB=OD=1.∵C(3,2),∴OC=2,CE=3,∴DE=1+2=3,∴DE=CE,∴∠ADO=45°,OA=OD=1,∴m=1.故选B.【点睛】本题考查了等腰直角三角形的判定与性质,图形与坐标的性质,以及轴对称最短的性质,根据轴对称最短确定出点A的位置是解答本题的关键.12、B【解析】根据两点关于x轴对称,则横坐标不变,纵坐标互为相反数进行求解即可.【详解】∵两点关于x轴对称,则横坐标不变,纵坐标互为相反数,∴点关于轴对称的点的坐标是,故选:B.【点睛】本题主要考查了对称点的坐标规律,熟练掌握相关概念是解题关键.二、填空题(每题4分,共24分)13、20【分析】先根据三角形的内角和求出∠ABC的度数,再根据是的垂直平分线得出AE=BE,从而得出∠ABE=∠A=50°,再计算∠EBC即可.【详解】∵,∴∠ABC=180°-∠A-∠C=70°,∵是的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∴∠EBC=70°-50°=20°.故答案为20.【点睛】本题考查三角形的内角和定理和线段垂直平分线的性质,根据是的垂直平分线得出AE=BE是解题的关键.14、100°【分析】分别作点P关于OA、OB的对称点P、P,连P、P,交OA于M,交OB于N,△PMN的周长=PP,然后得到等腰△OP1P2中,∠OPP+∠OPP=100°,即可得出∠MPN=∠OPM+∠OPN=∠OPM+∠OPN=100°.【详解】分别作点P关于OA、OB的对称点P、P,连接PP,交OA于M,交OB于N,则OP=OP=OP,∠OPM=∠MPO,∠NPO=∠NPO,根据轴对称的性质,可得MP=PM,PN=PN,则△PMN的周长的最小值=PP,∴∠POP=2∠AOB=80°,∴等腰△OPP中,∠OPP+∠OPP=100°,∴∠MPN=∠OPM+∠OPN=∠OPM+∠OPN=100°,故答案为100°【点睛】此题考查轴对称-最短路线问题,解题关键在于作辅助线15、1【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD,进而可得答案.【详解】如图,∵∠ABC=90°,点D为斜边AC的中点,∴AC=2BD,∵BD=5,∴AC=1,故答案为:1.【点睛】此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.16、1.【分析】连接BD,根据的等腰直角三角形的性质由ASA证明△BED≌△CFD,得出AE=BF,BE=CF,由勾股定理即可得出结果.【详解】连接BD,如图所示:∵D是AC中点,△ABC是等腰三角形,∠ABC=90°,∴∠ABD=∠CBD=∠C=41°,BD=AD=CD,BD⊥AC,AB=BC∵∠EDB+∠FDB=90°,∠FDB+∠CDF=90°,∴∠EDB=∠CDF,在△BED和△CFD中,,∴△BED≌△CFD(ASA),∴BE=FC=3,∴AE=BF=4,在RT△BEF中,EF==1,故答案为:1.【点睛】本题考查了直角三角形斜边上的中线是斜边的一半,三角形全等的判定的性质以及勾股定理,解题的关键是掌握好等腰直角三角形的性质和全等三角形的判定.17、2【解析】根据负指数幂的意义可知:(“倒底数,反指数”).故应填:2.18、25°【分析】根据角平分线的定义得出∠CBE=25°,再根据平行线的性质可得∠C的度数.【详解】∵平分,且,∴∠CBE=∠ABC=25°,∵∴∠CBE=∠BCD∴∠C=25°.故答案为:25°.【点睛】此题主要考查了解平分线的定义以及平行线的性质,求出∠CBE=25°是解题关键.三、解答题(共78分)19、(1);(2)1【分析】(1)原式变形后,通分并利用同分母分式的减法法则计算即可得到结果;(2)求出不等式组的解集,确定出整数x的值,代入计算即可求出A的值.【详解】解:(1)根据题意得:;(2)不等式组,得:,∵x为整数,或,由,得到,则当时,.【点睛】此题考查了分式的加减法,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20、(1)AB=2BC,证明见解析;(2)-1.【分析】(1)取AB的中点D,连接DC,得AD=BD=CD,再证明△DBC是等边三角形得BD=BC,从而可证明AB=2BC;(2)过点A作AF⊥BD于点F,先确定∠2及∠3的度数,在Rt△AFB中求出AF,BF;Rt△AEF中,求出EF,AE,在Rt△ABD中求出DB,继而得出DE.【详解】(1)AB=2BC证明:取AB的中点D,连接DC,∵∠ACB=90°,CD为斜边AB上的中线∴AD=BD=CD∴∠A=∠ACD=30°,∠B=∠BCD∴∠ADC=180°-∠A-∠ACD=120°∴∠B=∠BCD=∠ADC=60°∴△DBC是等边三角形∴BD=BC∴AB=2BD=2BC即AB=2BC(2)过点A作AF⊥BD于点F,∵∠CDB=90°,∠1=30°,∴∠2=∠3=60°,在△AFB中,∠AFB=90°,∵∠4=45°,AB=,∴AF=BF=,在Rt△AEF中,∠AFE=90°,∴EF=1,AE=2,在△ABD中,∠DAB=90°,AB=,∴DB=2,∴DE=DB-BF-EF=-1.【点睛】本题考查了勾股定理的知识,解答本题的关键是作辅助线构造特殊三角形.21、(1)为直角三角形,理由见解析;(2);(3)当为或或时,为等腰三角形.【分析】(1)由旋转可以得出和均为等边三角形
,再根据求出,进而可得为直角三角形;(2)因为进而求得,根据,即可求出求的度数;(3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.【详解】解:(1)为直角三角形,理由如下:绕顺时针旋转得到,和均为等边三角形,,,,,为直角三角形;(2)由(1)知:,,,,;(3)∵∠AOB=110°,∠BOC=α∴∠AOC=250°-a.∵△OCD是等边三角形,∴∠DOC=∠ODC=60°,∴∠ADO=a-60°,∠AOD=190°-a,当∠DAO=∠DOA时,2(190°-a)+a-60°=180°,解得:a=140°当∠AOD=ADO时,190°-a=a-60°,解得:a=125°,当∠OAD=∠ODA时,190°-a+2(a-60°)=180°,解得:a=110°∴α=110°,α=140°,α=125°.【点睛】本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.22、;选x=0时,原式=或选x=2时,原式=(任选其一即可)【分析】先根据分式的各个运算法则化简,然后从给出的数中选择一个使原分式有意义的数代入即可.【详解】解:===根据分式有意义的条件,原分式中当选x=0时,原式=;当选x=2时,原式=.【点睛】此题考查的是分式的化简求值题和分式有意义的条件,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.23、(1)(m+n)−4mn,(m−n);(2)(m+n)−4mn=(m−n);(3)±5.【分析】(1)观察图形可确定:方法一,大正方形的面积为(m+n),四个小长方形的面积为4mn,中间阴影部分的面积为S=(m+n)-4mn;方法二,图2中阴影部分为正方形,其边长为m-n,所以其面积为(m-n).(2)观察图形可确定,大正方形的面积减去四个小长方形的面积等于中间阴影部分的面积,即(m+n)-4mn=(m-n).(3)根据(2)的关系式代入计算即可求解.【详解】(1)方法一:S小正方形=(m+n)−4mn.方法二:S小正方形=(m−n).(2)(m+n),(m−n),mn这三个代数式之间的等量关系为(m+n)−4mn=(m−n).(3)∵x+y=9,xy=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年研究生考试考研英语(二204)试卷及答案指导
- 数控车床违反作业流程处罚制度
- 代理采购业务协议范本2024
- 2024年股权转让及权益变更协议
- 2024年度中药材种植种子销售协议
- 2024批量门禁设备购销协议样本
- 2024年不动产即售协议模板
- 2024建筑泥水工施工分包协议范本
- 2024年度砌砖物流服务协议条款
- 2023-2024学年云南省昭通市大关县民族中学高三素质班第二次考查数学试题
- 2024年计算机二级WPS考试题库380题(含答案)
- 2024中国邮政集团江苏分公司春季招聘高频500题难、易错点模拟试题附带答案详解
- 道德与法治学科成绩提升计划
- 2022-2023学年北京市西城区德胜中学八年级(上)期中数学试卷【含解析】
- 病历书写基本规范细则
- 高校廉政课件
- 22G101三维彩色立体图集
- 装修工人简历范文
- 工作任务委托书
- 知道网课智慧树《文化考察(西安工程大学)》章节测试答案
- 生物制剂在肾病综合征中的应用和思考
评论
0/150
提交评论