2022年温州市苍南县初中数学毕业考试模拟冲刺卷含解析_第1页
2022年温州市苍南县初中数学毕业考试模拟冲刺卷含解析_第2页
2022年温州市苍南县初中数学毕业考试模拟冲刺卷含解析_第3页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是()A.a< B.a> C.a<﹣ D.a>﹣2.若,则的值为()A.12 B.2 C.3 D.03.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.244.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10105.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.47.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为()A.9 B.10 C.12 D.148.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数 B.中位数 C.众数 D.方差9.将抛物线y=A.y=-12C.y=-1210.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.5二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.12.若不等式组的解集为,则________.13.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为_____.14.使得分式值为零的x的值是_________;15.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.16.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为_____cm1.(结果保留π)三、解答题(共8题,共72分)17.(8分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:,)18.(8分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值.19.(8分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.20.(8分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DFAB于点F,∠BCD=2∠ABD.(1)求证:AB是☉O的切线;(2)若∠A=60°,DF=,求☉O的直径BC的长.21.(8分)在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?22.(10分)解不等式组请结合题意填空,完成本题的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.23.(12分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.24.一道选择题有四个选项.(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.【详解】解方程3x+2a=x﹣5得x=,因为方程的解为负数,所以<0,解得:a>﹣.【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.2、A【解析】

先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.【详解】∵,∴,∴.故选:A.【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.3、B【解析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.4、B【解析】

根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.【详解】29.8亿用科学记数法表示为:29.8亿=2980000000=2.98×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、B【解析】∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3),因此将抛物线C向右平移4个单位.故选B.6、C【解析】

本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,∵函数图象在第一象限,k>0,∴.解得:k=1.故选C.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.7、A【解析】

利用平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周长=3+2+4=9,故选:A.【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.8、B【解析】

根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B.【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。9、D【解析】

将抛物线y=12【详解】由题意得,a=-12设旋转180°以后的顶点为(x′,y′),则x′=2×0-(-2)=2,y′=2×3-5=1,∴旋转180°以后的顶点为(2,1),∴旋转180°以后所得图象的解析式为:y=-1故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.10、A【解析】

根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.二、填空题(本大题共6个小题,每小题3分,共18分)11、22【解析】

只要证明△PBC是等腰直角三角形即可解决问题.【详解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案为22.【点睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.12、-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.13、1;【解析】分析:根据辅助线做法得出CF⊥AB,然后根据含有30°角的直角三角形得出AB和BF的长度,从而得出AF的长度.详解:∵根据作图法则可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.14、2【解析】

根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则,即要使分式为零,则,即综上可得故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.15、-1.【解析】

设正方形的对角线OA长为1m,根据正方形的性质则可得出B、C坐标,代入二次函数y=ax1+c中,即可求出a和c,从而求积.【详解】设正方形的对角线OA长为1m,则B(﹣m,m),C(m,m),A(0,1m);把A,C的坐标代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,则ac=-1m=-1.考点:二次函数综合题.16、【解析】试题分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.试题解析:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC=.考点:正多边形和圆.三、解答题(共8题,共72分)17、解:设OC=x,在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.在Rt△BOC中,∵∠BCO=30°,∴.∵AB=OA﹣OB=,解得.∴OC=5米.答:C处到树干DO的距离CO为5米.【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.【分析】设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根据AB=OA-OB=2即可得出结论.18、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.【解析】

(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有,解得,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1.19、(1)见解析;(2)【解析】分析:(1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;(2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.详解:(1)如下图,连接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切线.(2)如下图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=9,AD=6,∴BD===3,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴,∴,∴CD=.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.20、(1)证明过程见解析;(2)【解析】

(1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.【详解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足为B又∵CB为直径∴AB是⊙O的切线.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定21、(1)0<x≤200,且x是整数(2)175【解析】

(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【详解】(1)根据题意得:0<x≤200,且x为整数;(2)设小王原计划购买x个纪念品,根据题意得:,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点睛】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.22、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.【解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(I)解不等式(1),得x≥;(II)解不等式(1),得x≤1;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为:≤x≤1.故答案为x≥、x≤1、≤x≤1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23、(1)y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).【解析】

(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得===,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【详解】解:(1)把点B(-,2)代入y=a(x-)2-2,解得a=1,∴抛物线的表达式为y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),设直线AB表达式为y=kx+b,代入点A,B的坐标得,解得,∴直线AB的表达式为y=-2x-1,易求E(0,-1),F(0,-)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论