


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.要使(﹣6x3)(x2+ax﹣3)的展开式中不含x4项,则a=()A.1 B.0 C.﹣1 D.3.()A. B. C. D.2019×20204.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.5.某工程对承接了60万平方米的绿化工程,由于情况有变,……,设原计划每天绿化的面积为万平方米,列方程为,根据方程可知省略的部分是()A.实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B.实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C.实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D.实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务6.某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成7.边长为a,b的长方形,它的周长为14,面积为10,则ab+ab的值为()A.35 B.70 C.140 D.2808.已知点,都在直线上,则,的值的大小关系是()A. B. C. D.不能确定9.若2m=a,32n=b,m,n均为正整数,则23m+10n的值为()A.ab B.ab C.a+b D.ab10.已知关于的分式方程的解是非负数,则的取值范圈是()A. B. C.且 D.或二、填空题(每小题3分,共24分)11.若是完全平方公式,则__________.12.对于实数,,定义运算“”如下:.若,则_____.13.小明把一副含45°,30°角的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠1+∠2等于_________.14.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为___________.15.计算:____________.16.如图,中,,的平分线与边的垂直平分线相交于,交的延长线于,于,现有下列结论:①;②;③平分;④.其中正确的有________.(填写序号)17.如图,,则的度数为_____________;18.点与点关于_________对称.(填“轴”或“轴”)三、解答题(共66分)19.(10分)如图1所示,直线与轴负半轴,轴正半轴分别交于、两点.
(1)当时,求点坐标及直线的解析式.(2)在(1)的条件下,如图2所示,设为延长线上一点,作直线,过、两点分别作于,于,若,求的长.(3)当取不同的值时,点在轴正半轴上运动,分别以、为边,点为直角顶点在第一、二象限内作等腰直角和等腰直角,连接交轴于点,如图3.问:当点在轴正半轴上运动时,试猜想的长是否为定值?若是,请求出其值;若不是,说明理由.20.(6分)如图1,点为正方形的边上一点,,且,连接,过点作垂直于的延长线于点.(1)求的度数;(2)如图2,连接交于,交于,试证明:.21.(6分)如图,直角坐标系中,点是直线上第一象限内的点,点,以为边作等腰,点在轴上,且位于点的右边,直线交轴于点.(1)求点的坐标;(2)点向上平移个单位落在的内部(不包括边界),求的取值范围.22.(8分)(1)计算:(2)因式分解:(3)计算:(4)计算:23.(8分)化简:(1)(2)24.(8分)观察以下等式:,,,,……(1)依此规律进行下去,第5个等式为_______,猜想第n个等式为______(n为正整数);(2)请利用分式的运算证明你的猜想.25.(10分)某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;甲乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲8b80.4乙a9c3.2根据以上信息,回答下列问题:(1)表格是a=,b=,c=.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是;(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数,中位数,方差.(填“变大”、“变小”或“不变”)26.(10分)因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据各象限内点的坐标特征解答.【详解】解:点(﹣2,3)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、B【分析】原式利用单项式乘多项式的法则计算,根据结果不含x4项求出a的值即可.【详解】解:原式=−6x5−6ax4+18x3,由展开式不含x4项,得到a=0,故选:B.【点睛】本题考查了单项式乘多项式的法则,根据不含哪一项则该系数为零是解题的关键.3、C【分析】首先令,进行整体代换,然后进行整式混合运算即可得解.【详解】令原式===2021故选:C.【点睛】此题主要考查利用整体代换求解整式混合运算,熟练掌握,即可解题.4、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.5、A【解析】根据工作时间=工作总量÷工作效率结合所列分式方程,即可找出省略的条件,此题得解.【详解】解:设原计划每天绿化的面积为x万平方米,∵所列分式方程是,∴为实际工作时间,为原计划工作时间,∴省略的条件为:实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务.故选:A.【点睛】本题考查了分式方程的应用,根据给定的分式方程,找出省略的条件是解题的关键.6、C【解析】由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.此题得解.【详解】解:∵利用工作时间列出方程:,∴缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.故选:C.【点睛】本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.7、B【解析】∵长方形的面积为10,∴ab=10,∵长方形的周长为14,∴2(a+b)=14,∴a+b=7.对待求值的整式进行因式分解,得a2b+ab2=ab(a+b),代入相应的数值,得.故本题应选B.8、A【分析】根据两点的横坐标-3<1,及k的值即可得到答案.【详解】∵k=<0,∴y随x的增大而减小,∵-3<1,∴,故选:A.【点睛】此题考查一次函数的增减性,熟记函数的性质定理即可正确解题.9、A【分析】根据幂的乘方与积的乘方计算法则解答.【详解】解:∵,,
∴,
∴,
故选A.【点睛】本题考查了幂的乘方与与积的乘方,熟记计算法则即可解答.10、C【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得所以因为方程的解是非负数所以,且所以且故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键.二、填空题(每小题3分,共24分)11、【分析】根据乘积二倍项和已知平方项确定出这两个数为和,再利用完全平方式求解即可.【详解】解:,.故答案为:16.【点睛】本题主要了完全平方式,根据乘积二倍项确定出这两个数是求解的关键.12、【分析】根据题意列出方程,然后用直接开平方法解一元二次方程.【详解】解:根据题目给的算法列式:,整理得:,,,.故答案是:.【点睛】本题考查解一元二次方程,解题的关键是掌握解一元二次方程的方法.13、210°【分析】由三角形外角定理可得,,故==,根据角的度数代入即可求得.【详解】∵,,∴====210°.故答案为:210°.【点睛】本题主要考查了三角形外角性质,熟练掌握三角形中角的关系是解题的关键.14、1.【解析】试题分析:∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为=2.该直角三角形的面积S=×3×2=1.故答案为1.考点:勾股定理.15、【分析】根据商的乘方,分子、分母分别平方,然后在分别用积的乘方,幂的乘方法则来计算即可得结果.【详解】,故答案为:【点睛】利用商的乘方法则,在用积的乘方计算时,要注意负数的平方是正数,积的乘方法则计算,以及幂的乘方计算时注意指数相乘的关系.16、①②④【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=AD,DF=AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.故①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=AD.同理:DF=AD.∴DE+DF=AD.故②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠EDF.故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.故答案为①②④【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.17、100°【分析】根据三角形的外角性质计算即可.【详解】解:∠BEA是△ACE的外角,
∴∠BEA=∠A+∠C=70°,
∠BDA是△BDE的外角,
∴∠BDA=∠BEA+∠B=100°,
故答案为:100°.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.18、轴【解析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键.三、解答题(共66分)19、(1);(2);(3)的长为定值【分析】(1)先求出A、B两点坐标,求出OA与OB,由OA=OB,求出m即可;(2)用勾股定理求AB,再证,BN=OM,由勾股定理求OM即可;(3)先确定答案定值,如图引辅助线EG⊥y轴于G,先证,求BG再证,可确定BP的定值即可.【详解】(1)对于直线.当时,.当时,.,...解得.直线的解析式为.(2),.由勾股定理,......在与中,....(3)如图所示:过点作轴于点.为等腰直角三角形,.,...,为等腰直角三角形,...【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA=OB,求OM,用勾股定理求AB,再证,构造,求BG,再证.20、(1)∠EAF=135°;(2)证明见解析.【分析】(1)根据正方形的性质,找到证明三角形全等的条件,只要证明△EBC≌△FNE(AAS)即可解决问题;(2)过点F作FG∥AB交BD于点G.首先证明四边形ABGF为平行四边形,再证明△FGM≌△DMC(AAS)即可解决问题;【详解】(1)解:∵四边形是正方形,∴,∴,,∴,∵,∴≌∴,,∵∴∴∴,∴,∵,∴,∴(2)证明:过点作交于点.由(1)可知,∵∴,∴,∵,∴四边形为平行四边形,∴,,∵,∴,∵,∴,∴,∵∴≌∴,∴,∴.【点睛】本题考查全等三角形的判定和性质、正方形的性质、平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21、(1);(2)【分析】(1)根据题意,设点,由等腰直角三角形的性质进行求解即可得解;(2)过作轴的垂线交直线于点,交直线于,分别以A点在直线OC和直线CD上为临界条件进行求解即可的到m的值.【详解】(1)设点过点作轴,交点为由题意得为等腰直角三角形∵轴∴∵点在点的右边∴,解得∴,;(2)∵,∴直线的解析式为如下图,过作轴的垂线交直线于点,交直线于∵∴解得的坐标为,Q的坐标为∴.【点睛】本题属于一次函数的综合题,包含等腰直角三角形的性质等相关知识点,熟练掌握一次函数综合题的解决技巧是解决本题的关键.22、(1)6;(2);(3);(4)【分析】(1)根据二次根式乘法法则运算;(2)先提公因式,再套用公式;(3)根据整式乘法法则运算;(4)运用乘法公式运算.【详解】解:(1)===6(2)(3)==(4)===【点睛】考核知识点:因式分解,整式乘法.掌握相应法则是关键.23、(1);(2)【分析】(1)根据二次根式的运算法则,即可得到答案;(2)根据平方差和完全平方公式,结合去括号法则与合并同类项法则,即可得到答案.【详解】(1)原式==;(2)原式===.【点睛】本题主要考查二次根式的化简与整式的化简,熟练掌握二次根式的运算法则,乘法公式以及合并同类项,去括号法则,是解题的关键.24、(1),;(2)见解析【分析】(1)仿照阅读材料中的等式,利用式与式之间的关联得到第5个等式,进而确定出第n个等式即可;(2)验证所得的等式即可.【详解】解:(1),.(2)证明∵,,.【点睛】此题考查了分式的混合运算,以及有理数的混合运算,及对所给
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具水濂柜供货合同5篇
- 专业设计服务项目绩效评估报告
- 非临床安全性评价服务项目绩效评估报告
- 信息化教学大赛方案设计
- 中华优传统文化 课件 第五章 中国传统哲学
- 妇科疾病超声诊断应用与规范
- 2025西安建筑科技大学华清学院辅导员考试试题及答案
- 2025贵州护理职业技术学院辅导员考试试题及答案
- 2025石家庄信息工程职业学院辅导员考试试题及答案
- 卫生院安全培训
- 人教版小学数学四年级下册课件:《平均数》课件
- 枣庄事业单位统一招聘考试真题
- 高考语文作文:二元关系分析类思辨作文
- 《教育心理学(第3版)》全套教学课件
- 【年产2000吨色氨酸发酵工厂的计算与设计(附布置图流程图)15000字(论文)】
- 2024年仓储、物流等货物管理员资格知识考试题库(附含答案)
- 提高病人吸氧的依从性品管圈
- DL∕T 1917-2018 电力用户业扩报装技术规范
- 边沟施工技术交底滑模
- 向最高检察院提起申诉书范文
- 网孔电流法 (1)讲解
评论
0/150
提交评论