2022年浙江省杭州市萧山区五校联考数学八上期末监测试题含解析_第1页
2022年浙江省杭州市萧山区五校联考数学八上期末监测试题含解析_第2页
2022年浙江省杭州市萧山区五校联考数学八上期末监测试题含解析_第3页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.不等式组的整数解的个数是()A.2 B.3 C.4 D.52.已知,为内一定点,上有一点,上有一点,当的周长取最小值时,的度数是A. B. C. D.3.如图,线段AB、CD相交于点O,AO=BO,添加下列条件,不能使的是()A.AC=BD B.∠C=∠D C.AC∥BD D.OC=OD4.下列各式由左边到右边的变形中,是分解因式的为()A. B.C. D.5.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若DE=15cm,BE=8cm,则BC的长为()A.15cm B.17cm C.30cm D.32cm6.下列计算正确的是()A.a3•a3=2a3 B.(a3)2=a5C.a5÷a3=a2 D.(﹣2a)2=﹣4a27.一个两位数,个位上的数字与十位上的数字之和为7,如果这个两位数加上45则恰好成为个位数字与十位数字对调后组成的新两位数,则原来的两位数是()A.61 B.16 C.52 D.258.已知A(﹣2,a),B(1,b)是一次函数y=﹣2x+1图象上的两个点,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定9.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD10.人体一根头发的直径约为米,这个数字用科学记数法表示正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.当x时,分式有意义.12.因式分解:ax3y﹣axy3=_____.13.有一个数值转换器,原理如图:当输入x为81时,输出的y的值是_____.14.如图,有一张长方形纸片,,.先将长方形纸片折叠,使边落在边上,点落在点处,折痕为;再将沿翻折,与相交于点,则的长为___________.15.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为_____.16.如图,直线,平分,交于点,,那么的度数为________.17.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为.18.如图,折叠长方形,使顶点与边上的点重合,已知长方形的长度为,宽为,则______.三、解答题(共66分)19.(10分)如图,在由6个大小相同的小正方形组成的方格中,设每个小正方形的边长均为1.(1)如图①,,,是三个格点(即小正方形的顶点),判断与的位置关系,并说明理由;(2)如图②,连接三格和两格的对角线,求的度数(要求:画出示意图,并写出证明过程).20.(6分)如图,在中,,,是中点,.求证:(1);(2)是等腰直角三角形.21.(6分)先化简,再求值:,其中x=.22.(8分)(1)计算:-|-3|+(-2018)0+(-2)2019×(2)计算:〔(2x-y)(2x+y)-(2x-3y)2〕÷(-2y).23.(8分)如图,L1、L2分别表示两个一次函数的图象,它们相交于点P.(1)求出两条直线的函数关系式;(2)点P的坐标可看作是哪个二元一次方程组的解?(3)求出图中△APB的面积.24.(8分)先化简,再求值:[(4x-y)(2x-y)+y(x-y)]÷2x,其中x=2,y=25.(10分)如图,在中,,分别在、边上,且,,求的度数.26.(10分)一般地,若(且),则n叫做以a为底b的对数,记为,即.譬如:,则4叫做以3为底81的对数,记为(即=4).(1)计算以下各对数的值:,,.(2)由(1)中三数4、16、64之间满足的等量关系式,直接写出、、满足的等量关系式;(3)由(2)猜想一般性的结论:.(且),并根据幂的运算法则:以及对数的含义证明你的猜想.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先分别求出每一个不等式的解集,然后确定出不等式组的解集,最后确定整数解的个数即可.【详解】,由①得:x>-2,由②得:x<3,所以不等式组的解集为:-2<x<3,整数解为-1,0,1,2,共4个,故选C.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.2、C【分析】设点关于、对称点分别为、,当点、在上时,周长为,此时周长最小.根据轴对称的性质,可求出的度数.【详解】分别作点关于、的对称点、,连接、、,交、于点、,连接、,此时周长的最小值等于.由轴对称性质可得,,,,,,又,,.故选:.【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.3、A【分析】已知AO=BO,由对顶角相等可得到∠AOC=∠BOD,当添加条件A后,不能得到△AOC≌△BOD;接下来,分析添加其余选项的条件后能否得到证明三角形全等的条件,据此解答【详解】解:题目隐含一个条件是∠AOC=∠BOD,已知是AO=BOA.加AC=BD,根据SSA判定△AOC≌△BOD;B.加∠C=∠D,根据AAS判定△AOC≌△BOD;C.加AC∥BD,则ASA或AAS能判定△AOC≌△BOD;D.加OC=OD,根据SAS判定△AOC≌△BOD故选A【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、C【解析】试题分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选C.考点:因式分解的意义.5、D【分析】先利用角平分线的性质得到DC=15,再根据勾股定理计算出BD,然后计算CD+BD即可.【详解】解:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE=15,在Rt△BDE中,BD==17,∴BC=CD+BD=15+17=32(cm).故选:D.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.6、C【分析】分别根据同底数幂的除法法则,幂的乘方运算法则,同底数幂的除法法则,积的乘方运算法则逐一判断即可.【详解】A.a3•a3=a6,故本选项不合题意;B.(a3)2=a6,故本选项不合题意;C.a5÷a3=a2,正确,故本选项符合题意;D.(﹣2a)2=4a2,故本选项不合题意.故选:C.【点睛】本题考查了整式的相关计算,掌握同底数幂的除法法则,幂的乘方运算法则,同底数幂的除法法则,积的乘方运算法是解题的关键.7、B【分析】先设这个两位数的十位数字和个位数字分别为x,7-x,根据“如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数”列出方程,求出这个两位数.【详解】设这个两位数的十位数字为x,则个位数字为7−x,由题意列方程得,10x+7−x+45=10(7−x)+x,解得x=1,则7−x=7−1=6,故这个两位数为16.故选B.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.8、A【分析】根据一次函数当k<0时,y随x的增大而减小解答.【详解】∵k=﹣2<0,∴y随x的增大而减小.∵﹣2<1,∴a>b.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.9、D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.10、D【分析】根据科学记数法的表示方法解答即可.【详解】解:用科学记数法表示为.故选:D.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(每小题3分,共24分)11、x≠1【解析】试题分析:分式有意义,则分母x-1≠0,由此易求x的取值范围.试题解析:当分母x-1≠0,即x≠1时,分式有意义.考点:分式有意义的条件.12、axy(x+y)(x﹣y)【分析】提取公因式axy后剩余的项满足平方差公式,再运用平方差公式即可;【详解】解:ax3y﹣axy3=axy=axy(x+y)(x﹣y);故答案为:axy(x+y)(x﹣y)【点睛】本题主要考查了提公因式法与公式法的运用,掌握提公因式法,平方差公式是解题的关键.13、【分析】将x的值代入数值转化器计算即可得到结果.【详解】将x=81代入得:=9,将x=9代入得:=3,再将x=3代入得则输出y的值为.14、【解析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB∥FC,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴,故答案为:.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.15、1【分析】设出一次函数的一般式,然后用待定系数法确定函数解析式,最后将x=0代入即可.【详解】解:设一次函数的解析式为y=kx+b(k≠0),由题意得:解得:所以函数解析式为:y=-x+1当x=0时,y=1,即p=1.故答案是:1.【点睛】本题考查了用待定系数法求一次函数解析式,解题的关键在于理解一次函数图象上的点坐标一定适合函数的解析式.16、120°【分析】由,平分,得∠CBD=∠ABD=30°,进而即可得到答案.【详解】∵,∴∠ABD=,∵平分,∴∠CBD=∠ABD=30°,∴=180°-30°-30°=120°.故答案是:120°.【点睛】本题主要考查平行线的性质与角平分线的定义以及三角形内角和定理,掌握“双平等腰”模型,是解题的关键.17、1.5×10-1【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣1,故答案为1.5×10﹣1.考点:科学记数法—表示较小的数.18、1【分析】由长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,可得AF=AD=10,DE=EF,然后设EC=x,则DE=EF=CD−EC=8−x,首先在Rt△ABF中,利用勾股定理求得BF的长,继而可求得CF的长,然后在Rt△CEF中,由勾股定理即可求得方程:x2+42=(8−x)2,解此方程即可求得答案.【详解】∵四边形ABCD是长方形,∴∠B=∠C=90,AD=BC=10,CD=AB=8,∵△ADE折叠后得到△AFE,∴AF=AD=10,DE=EF,设EC=x,则DE=EF=CD−EC=8−x,∵在Rt△ABF中,AB2+BF2=AF2,∴82+BF2=102,∴BF=6,∴CF=BC−BF=10−6=4,∵在Rt△EFC中,EC2+CF2=EF2,∴x2+42=(8−x)2,解得:x=3,∴DE=1故答案为1.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.三、解答题(共66分)19、(1),理由见解析;(2),理由见解析.【分析】(1)连接AC,再利用勾股定理列式求出AB2、BC2、AC2,然后利用勾股定理逆定理解答;(2)根据勾股定理的逆定理判定△ABC是等腰直角三角形,根据全等三角形的判定和性质,可得结果.【详解】解:(1),理由:如图①,连接,由勾股定理可得,,,所以,所以是直角三角形且,所以,(2).理由:如图②,连接AB、BC,由勾股定理得,,,所以,所以是直角三角形且.又因为,所以是等腰直角三角形,∴∠CAB=45°,在△ABE和△FCD中,,∴△ABE≌△FCD(SAS),∴∠BAD=∠β,∴∠α+∠β=∠CAD+∠BAD=45°.【点睛】本题考查了勾股定理、勾股定理逆定理、等腰直角三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握网格结构以及勾股定理和逆定理是解题的关键.20、(1)见解析;(2)见解析【分析】(1)连接AD,证明△BFD≌△AED即可得出DE=DF;(2)根据三线合一性质可知AD⊥BC,由△BFD≌△AED可知∠BDF=∠ADE,根据等量代换可知∠EDF=90°,可证△DEF为等腰直角三角形.【详解】证明:(1)如图,连接AD,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AB=AC,是中点,∴∠DAE=∠BAD=45°∴∠BAD=∠B=45°∴AD=BD,∠ADB=90°,在△DAE和△DBF中,,∴△DAE≌△DBF(SAS),∴DE=DF;(2)∵△DAE≌△DBF∴∠ADE=∠BDF,DE=DF,∵∠BDF+∠ADF=∠ADB=90°,∴∠ADE+∠ADF=90°.∴△DEF为等腰直角三角形.【点睛】本题主要考查了全等三角形的判定与性质和等腰三角形的判定,考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.21、;;【分析】根据分式的运算法则进行化简计算.【详解】原式当时,原式.【点睛】本题考查的是分式的运算,熟练掌握因式分解是解题的关键.22、(1)1;(2)-6x+5y【分析】(1)根据实数的混合运算法则进行计算即可得解;(2)根据整式的混合运算法则进行计算即可得解.【详解】(1)原式==4-3+1-1=1;(2)原式====.【点睛】本题主要考查了实数及整式的混合运算,熟练掌握相关运算法则是解决本题的关键.23、(1)L1:y=;L2:y=(2)(3)【分析】(1)利用待定系数法即可求出两条直线的函数关系式;(2)根据两直线的交点坐标与两直线解析式联立的二元一次方程组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论