版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年江苏省盐城市某学校数学单招试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0
2.A.B.{3}
C.{1,5,6,9}
D.{1,3,5,6,9}
3.设平面向量a(3,5),b(-2,1),则a-2b的坐标是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
4.A.一B.二C.三D.四
5.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2
B.2
C.
D.
6.函数和在同一直角坐标系内的图像可以是()A.
B.
C.
D.
7.某商品降价10%,欲恢复原价,则应提升()A.10%
B.20%
C.
D.
8.A.B.C.D.
9.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/50
10.二项式(x-2)7展开式中含x5的系数等于()A.-21B.21C.-84D.84
二、填空题(10题)11.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.
12.过点A(3,2)和点B(-4,5)的直线的斜率是_____.
13.
14.函数的定义域是_____.
15.以点(1,0)为圆心,4为半径的圆的方程为_____.
16.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā)=
。
17.
18.
19.函数f(x)=+㏒2x(x∈[1,2])的值域是________.
20.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
三、计算题(5题)21.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
22.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
23.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
24.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
25.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
四、证明题(5题)26.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
27.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
28.若x∈(0,1),求证:log3X3<log3X<X3.
29.△ABC的三边分别为a,b,c,为且,求证∠C=
30.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
五、简答题(5题)31.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
32.化简
33.由三个正数组成的等比数列,他们的倒数和是,求这三个数
34.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
35.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
六、综合题(5题)36.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
37.
38.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
39.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.A
2.D
3.A由题可知,a-2b=(3,5)-2(-2,1)=(7,3)。
4.A
5.D
6.D
7.C
8.C
9.B简单随机抽样方法.总体含有100个个体,则每个个体被抽到的概率为1/100,所以以简单随机抽样的方法从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为1/100×5=1/20.
10.D
11.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).
12.
13.-1/2
14.{x|1<x<5且x≠2},
15.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
16.0.5由于两个事件是对立事件,因此两者的概率之和为1,又两个事件的概率相等,因此概率均为0.5.
17.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
18.
19.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].
20.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
21.
22.
23.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
24.
25.
26.
27.
28.
29.
30.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
31.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
32.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
33.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1
34.
35.
36.
37.
38.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
39.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024房地产电线电缆采购合同
- 2024小区广告合同
- 2024卫生间防水施工合同
- 2024技术服务合同范本
- 2024年借款合同标的还款方式调整
- 2024年婚庆影楼合作业务协议
- 2024年山顶观景台租赁使用协议
- 2024设备运输合同参考
- 2024年企业咨询服务合同
- 2024年展会技术支持服务合同
- 肺炎支原体性肺炎护理课件
- 黑色素瘤护理的课件
- 水性可剥离涂料的制备
- 贝克抑郁量表(BDI)
- 科学论文中的学术不端案例分析
- 科学计算课件
- 【高血压患者不遵医饮食行为的原因及护理对策研究2600字(论文)】
- 绿化养护公司年终总结
- 太阳能制氢的能量转换、储存及利用系统
- 直肠癌放射治疗靶区勾画课件
- 《市场营销》知识点汇总
评论
0/150
提交评论