广东省东莞市翰林实验学校2023学年高三最后一模数学试题含解析_第1页
广东省东莞市翰林实验学校2023学年高三最后一模数学试题含解析_第2页
广东省东莞市翰林实验学校2023学年高三最后一模数学试题含解析_第3页
广东省东莞市翰林实验学校2023学年高三最后一模数学试题含解析_第4页
广东省东莞市翰林实验学校2023学年高三最后一模数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称2函数的图象如图所示,则它的解析式可能是( )ABCD3函数()的图像可以是( )ABCD4设,则,三数的大小关系是ABCD5已知函数,若,则的最小值为( )参

2、考数据:ABCD6已知集合,若,则( )ABCD7 “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为ABCD8已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则的内切圆的半径为( )ABCD9已知复数,则的虚部为( )ABCD110设函数满足,则的图像可能是ABCD11在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数

3、是( )ABCD12已知双曲线的一条渐近线方程为,则双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13学校艺术节对同一类的,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“或作品获得一等奖”; 乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是_.14在三棱锥中,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为_.15函数在区间内有且仅有两个零点,则实数的取值范围是_.16的展

4、开式中,的系数是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足ADCDCB90,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所成角的正弦值;()求二面角DPEB的余弦值18(12分)如图,在四棱柱中,平面,底面ABCD满足BC,且()求证:平面;()求直线与平面所成角的正弦值.19(12分)如图,设A是由个实数组成的n行n列的数表,其中aij (i,j=1,2,3,n)表示位于第i行第j列的实数,且aij1,-1.记S(n,n)为所有这

5、样的数表构成的集合对于,记ri (A)为A的第i行各数之积,cj (A)为A的第j列各数之积令a11a12a1na21a22a2nan1an2ann()请写出一个AS(4,4),使得l(A)=0;()是否存在AS(9,9),使得l(A)=0?说明理由;()给定正整数n,对于所有的AS(n,n),求l(A)的取值集合20(12分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.21(12分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立

6、若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次设该工厂生产件该产品,记每件产品的平均检验次 数为 (1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数22(10分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线交曲线于两点,

7、为中点.(1)求曲线的直角坐标方程和点的轨迹的极坐标方程;(2)若,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.2B【解析】根据定义域排除,求出的值,可以排除,考虑排除.【详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项, 与函数图象不一致;选项符合函数图

8、象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.3B【解析】根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【详解】由题可知:,所以当时,又,令,则令,则所以函数在单调递减在单调递增,故选:B【点睛】本题考查函数的图像,可从以下指标进行观察:(1)定义域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.4C【解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合

9、理地进行等价转化.5A【解析】首先的单调性,由此判断出,由求得的关系式.利用导数求得的最小值,由此求得的最小值.【详解】由于函数,所以在上递减,在上递增.由于,令,解得,所以,且,化简得,所以,构造函数,.构造函数,所以在区间上递减,而,所以存在,使.所以在上大于零,在上小于零.所以在区间上递增,在区间上递减.而,所以在区间上的最小值为,也即的最小值为,所以的最小值为.故选:A【点睛】本小题主要考查利用导数研究函数的最值,考查分段函数的图像与性质,考查化归与转化的数学思想方法,属于难题.6A【解析】由,得,代入集合B即可得.【详解】,即:,故选:A【点睛】本题考查了集合交集的含义,也考查了元素

10、与集合的关系,属于基础题.7D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(), 数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.8B【解析】设左焦点的坐标, 由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双

11、曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为: 所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.9C【解析】先将,化简转化为,再得到下结论.【详解】已知复数,所以,所以的虚部为-1.故选:C【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.10B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是

12、周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B11A【解析】由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:复数z=i(i为虚数单位)在复平面中对应点Z(0,1),(0,1),将绕原点O逆时针旋转得到,设(a,b),则,即,又,解得:,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.12B【解析】由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近

13、线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13B【解析】首先根据“学校艺术节对四件参赛作品只评一件一等奖”,故假设分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果【详解】若A为一等奖,则甲、丙、丁的说法均错误,不满足题意;若B为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意;若C为一等奖,则甲、丙、丁的说法均正确,不满足题意;若D为一等奖,则乙、丙、丁的说法均错误,不满足题意;综上所述,故B获得一等奖【点睛】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的

14、时候,可以采用依次假设为一等奖并通过是否满足题目条件来判断其是否正确14【解析】根据题意作出图象,利用三垂线定理找出二面角的平面角,再设出的长,即可求出三棱锥的高,然后利用利用基本不等式即可确定三棱锥的体积最大值,从而得出各棱的长度,最后根据球的几何性质,利用球心距,半径,底面半径之间的关系即可求出三棱锥的外接球的表面积.【详解】如图所示:过点作面,垂足为,过点作交于点,连接.则为二面角的平面角的补角,即有.易证面,而三角形为等边三角形, 为的中点.设, .故三棱锥的体积为当且仅当时,即.三点共线.设三棱锥的外接球的球心为,半径为.过点作于,四边形为矩形.则,在中,解得.三棱锥的外接球的表面积

15、为.故答案为:【点睛】本题主要考查三棱锥的外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,意在考查学生的直观想象能力,数学运算能力和逻辑推理能力,属于较难题.15【解析】对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.16【解析】先将原式展开成,发现中不含,故只研究后面一项即可得解.【详解】,依题意,只需求中的系数

16、,是.故答案为:-40【点睛】本题考查二项式定理性质,关键是先展开再利用排列组合思想解决,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()证明见解析()()【解析】()由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;()求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;()求解平面PBE的一个法向量,计算,即可得二面角DPEB的余弦值【详解】()PC底面ABCD, 如图以点为原点,直线分别为轴,建立空间直角坐标系,则,又,平面PAC,平面PDE,平面PDE平面PAC;()设为平面PDE的

17、一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;()设为平面PBE的一个法向量,又则,取,得,二面角DPEB的余弦值.【点睛】本题主要考查了平面与平面的垂直,直线与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.18 () 证明见解析;()【解析】()证明,根据得到,得到证明.() 如图所示,分别以为轴建立空间直角坐标系,平面的法向量,计算向量夹角得到答案.【详解】() 平面,平面,故.,故,故.,故平面.()如图所示:分别以为轴建立空间直角坐标系,则,.设平面的法向量,则,即,取得到,设直线与平面所成角为故.【点睛

18、】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.19()答案见解析;()不存在,理由见解析;()【解析】()可取第一行都为-1,其余的都取1,即满足题意;()用反证法证明:假设存在,得出矛盾,从而证明结论;()通过分析正确得出l(A)的表达式,以及从A0如何得到A1,A2,以此类推可得到Ak【详解】()答案不唯一,如图所示数表符合要求.()不存在AS(9,9),使得l(A)=0,证明如下:假如存在,使得.因为,所以,.,.,这18个数中有9个1,9个-1.令.一方面,由于这18个数中有9个1,9个-1,从而,另一方面,表示数表中所有元素之积(记这81个实数之积为m);也表

19、示m,从而,相矛盾,从而不存在,使得.()记这个实数之积为p.一方面,从“行”的角度看,有;另一方面,从“列”的角度看,有;从而有,注意到,下面考虑,.,.,中-1的个数,由知,上述2n个实数中,-1的个数一定为偶数,该偶数记为,则1的个数为2n-2k,所以,对数表,显然.将数表中的由1变为-1,得到数表,显然,将数表中的由1变为-1,得到数表,显然,依此类推,将数表中的由1变为-1,得到数表,即数表满足:,其余,所以,所以,由k的任意性知,l(A)的取值集合为.【点睛】本题为数列的创新应用题,考查数学分析与思考能力及推理求解能力,解题关键是读懂题意,根据引入的概念与性质进行推理求解,属于较难题.20(1);(2)4【解析】(1)根据已知用二倍角余弦求出,进而求出,利用正弦定理,即可求解;(2)由边角,利用余弦定理结合基本不等式,求出的最大值,即可求出结论.【详解】(1),由正弦定理得.(2)由(1)知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论