甘肃省白银市2023学年高三3月份模拟考试数学试题含解析_第1页
甘肃省白银市2023学年高三3月份模拟考试数学试题含解析_第2页
甘肃省白银市2023学年高三3月份模拟考试数学试题含解析_第3页
甘肃省白银市2023学年高三3月份模拟考试数学试题含解析_第4页
甘肃省白银市2023学年高三3月份模拟考试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1阅读下侧程序框图,为使输出的数据为31,则处应填的数字为A4B5C6D72设,则“ “是“”的( )A

2、充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必条件3设则以线段为直径的圆的方程是( )ABCD4已知函数在上可导且恒成立,则下列不等式中一定成立的是( )A、B、C、D、5我国古代有着辉煌的数学研究成果,其中的周髀算经、九章算术、海岛算经、孙子算经、缉古算经,有丰富多彩的内容,是了解我国古代数学的重要文献这5部专著中有3部产生于汉、魏、晋、南北朝时期某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )ABCD6执行如图所示的程序框图,输出的结果为( )ABCD7一个圆锥的底面和一个半球底面完全重合,如

3、果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )ABCD8在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则( )ABCD9设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D10如图,在三棱锥中,平面,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为( )ABCD11设全集为R,集合,则ABCD12一个几何体的三视图如图所示,则这个几何体的体积为( ) ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,在等腰三

4、角形中,已知,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_. 14若函数为奇函数,则_.15已知定义在的函数满足,且当时,则的解集为_.16若函数()的图象与直线相切,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体

5、育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,

6、抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;.)18(12分)如图,四棱锥中,底面为直角梯形,为等边三角形,平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.19(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.20(12分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,点G的轨迹为曲线C.(1)求曲线C的方程;(2)设

7、斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.21(12分)已知.(1)当时,求不等式的解集;(2)若,证明:.22(10分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】考点:程序框图分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利

8、用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案解:程序在运行过程中各变量的值如下表示: S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i5时退出,故选B2B【解析】解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.3A【解析】计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.

9、【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.4A【解析】设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.5D【解析】利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件

10、有9种情况,由古典概型概率公式可得结果.【详解】周髀算经、九章算术、海岛算经、孙子算经、缉古算经,这5部专著中有3部产生于汉、魏、晋、南北朝时期记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为故选D【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较

11、少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.6D【解析】由程序框图确定程序功能后可得出结论【详解】执行该程序可得故选:D【点睛】本题考查程序框图解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解7D【解析】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考

12、查圆锥的表面积和球的表面积公式,属于基础题.8C【解析】利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值.【详解】因为,且,所以.故选:C.【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.9A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中

13、,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来10A【解析】根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率【详解】由已知平面,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为故选:A【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数11B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的

14、定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.12B【解析】还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向

15、量的线性运算及数量积公式表示出,结合二次函数性质即可求得最小值.【详解】根据题意,连接,如下图所示:在等腰三角形中,已知,则由向量数量积运算可知线段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时, 取得最小值因而故答案为: 【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.14-2【解析】由是定义在上的奇函数,可知对任意的,都成立,代入函数式可求得的值.【详解】由题意,的定义域为,是奇函数,则,即对任意的,都成立,故,整理得,解得.故答案为:.【点睛】本题考查奇函数性质的应用,考查学生的计算求解能力,属于基础题.15

16、【解析】由已知得出函数是偶函数,再得出函数的单调性,得出所解不等式的等价的不等式,可得解集.【详解】因为定义在的函数满足,所以函数是偶函数,又当时,得时,所以函数在上单调递减,所以函数在上单调递减,函数在上单调递增,所以不等式等价于,即或,解得或,所以不等式的解集为:.故答案为:.【点睛】本题考查抽象函数的不等式的求解,关键得出函数的奇偶性,单调性,属于中档题.162【解析】设切点由已知可得,即可解得所求.【详解】设,因为,所以,即,又,.所以,即,.故答案为:.【点睛】本题考查导数的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,难度较易.三、解答题:共70分。

17、解答应写出文字说明、证明过程或演算步骤。17(1),;(2)详见解析.【解析】(1)根据频率分布表计算出平均数,进而计算方差,从而XN(65,142),计算P(51X93)即可;(2)列出Y所有可能的取值,分布求出每个取值对应的概率,列出分布列,计算期望,进而可得需要的总金额【详解】解:(1)由已知频数表得:,由,则,而,所以,则X服从正态分布,所以;(2)显然,所以所有Y的取值为15,30,45,60,所以Y的分布列为:Y15304560P所以,需要的总金额为:.【点睛】本题考查了利用频率分布表计算平均数,方差,考查了正态分布,考查了离散型随机变量的概率分布列和数学期望,主要考查数据分析能力

18、和计算能力,属于中档题18(1)见解析(2)【解析】(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:为等边三角形,为的中点,平面底面,平面底面,底面平面,又由题意可知为正方形,又,平面平面,平面平面(2)如图建立空间直角坐标系,则,由已知,得,设平面的法向量为,则令,则,由(1)知平面的法向量可取为平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑

19、推理能力,属于中档题.19(1),;(2).【解析】(1)根据面积公式和数量积性质求角及最大边;(2)根据的长度求出,再根据面积比值求,从而求出【详解】(1)在中,由,得,由,得,所以,所以,因为在中,所以,因为(当且仅当时取等),所以长的最小值为;(2)在三角形中,因为为中线,所以,所以,因为,所以,所以,由(1)知,所以,或,所以,因为为角平分线,或2,所以,或,所以【点睛】本题考查了平面向量数量积的性质及其运算,余弦定理解三角形及三角形面积公式的应用,属于中档题20(1);(2).【解析】(1)根据题意得到GB是线段的中垂线,从而为定值,根据椭圆定义可知点G的轨迹是以M,N为焦点的椭圆,即可求出曲线C的方程;(2)联立直线方程和椭圆方程,表示处的面积代入韦达定理化简即可求范围.【详解】(1)为的中点,且是线段的中垂线,又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论