2022届广东省清远市阳山县重点达标名校中考三模数学试题含解析_第1页
2022届广东省清远市阳山县重点达标名校中考三模数学试题含解析_第2页
2022届广东省清远市阳山县重点达标名校中考三模数学试题含解析_第3页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各式计算正确的是( )ABCD2如图,将ABC沿着DE剪成一个小三角形ADE和一个四边形DECB,若DEBC

2、,四边形DECB各边的长度如图所示,则剪出的小三角形ADE应是()ABCD3如图,已知点 P 是双曲线 y上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90得到线段 OQ,则经过点 Q 的双曲线的表达式为( )Ay By Cy Dy4已知O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若POC为直角三角形,则PB的长度()A1B5C1或5D2或45如图,ABC的内切圆O与AB,BC,CA分别相切于点D,E,F,且AD2,BC5,则ABC的周长为()A16B14C12D106如图,矩形ABCD中,AB=3,AD=4,连接BD,DBC的角平分线BE交DC于点E,现把

3、BCE绕点B逆时针旋转,记旋转后的BCE为BCE当线段BE和线段BC都与线段AD相交时,设交点分别为F,G若BFD为等腰三角形,则线段DG长为()ABCD7实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()Aa+b0Ba|2|CbD8下列运算正确的是()A2aa=1 B2a+b=2ab C(a4)3=a7 D(a)2(a)3=a59下图是由八个相同的小正方体组合而成的几何体,其左视图是( )ABCD10如图,ABCD,E为CD上一点,射线EF经过点A,EC=EA若CAE=30,则BAF=()A30 B40 C50 D6011如图,A(4,0),B(1,3),以OA、OB为边作OACB

4、,反比例函数(k0)的图象经过点C则下列结论不正确的是()AOACB的面积为12B若y5C将OACB向上平移12个单位长度,点B落在反比例函数的图象上D将OACB绕点O旋转180,点C的对应点落在反比例函数图象的另一分支上12如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD二、填空题:(本大题共6个小题,每小题4分,共24分)13在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为_14当2x5时,二次函数y(x1)2+2的最大值为_15在数学课上,老师提出如下问

5、题:尺规作图:确定图1中所在圆的圆心已知:求作:所在圆的圆心曈曈的作法如下:如图2,(1)在上任意取一点,分别连接,;(2)分别作弦,的垂直平分线,两条垂直平分线交于点点就是所在圆的圆心老师说:“曈曈的作法正确”请你回答:曈曈的作图依据是_16如图,直线a、b相交于点O,若1=30,则2=_17一元二次方程x24=0的解是_18因式分解:_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知点A(2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对

6、称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标20(6分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开

7、始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?21(6分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?22(8分)如图,矩形ABCD为台球桌面,AD260cm,AB130cm,球目前在E点位置,AE60c

8、m如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置求BF的长23(8分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为yx150,成本为20元/件,月利润为W内(元);若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10a40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W外(元)(1)若只在国内销售,当x1000(件)时,y (元/件);(2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);(3)若在国

9、外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值24(10分)定义:任意两个数a,b,按规则cb2+aba+7扩充得到一个新数c,称所得的新数c为“如意数”若a2,b1,直接写出a,b的“如意数”c;如果a3+m,bm2,试说明“如意数”c为非负数25(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_人,扇形统计图中“了解”部分所对应扇形的圆心角为_.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校

10、园安全知识达到“了解”和“基本了解”程度的总人数为_人.(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.26(12分)如图,在RtABC中,CD,CE分别是斜边AB上的高,中线,BCa,ACb若a3,b4,求DE的长;直接写出:CD (用含a,b的代数式表示);若b3,tanDCE=,求a的值27(12分)如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C(1)求点 A 的坐标;(2)结合函数的图象,求当 y0 时,x 的取值

11、范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】A选项中,不是同类二次根式,不能合并,本选项错误;B选项中,本选项正确;C选项中,而不是等于,本选项错误;D选项中,本选项错误;故选B.2、C【解析】利用相似三角形的性质即可判断【详解】设ADx,AEy,DEBC,ADEABC,x9,y12,故选:C【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3、D【解析】过P,Q分别作PMx轴,QNx轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何

12、意义确定出所求即可【详解】过P,Q分别作PMx轴,QNx轴,POQ=90,QON+POM=90,QON+OQN=90,POM=OQN,由旋转可得OP=OQ,在QON和OPM中,QONOPM(AAS),ON=PM,QN=OM,设P(a,b),则有Q(-b,a),由点P在y=上,得到ab=3,可得-ab=-3,则点Q在y=-上故选D【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键4、C【解析】由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD=1,若POC为直角三角形,只能是OPC

13、=90,则根据相似三角形的性质得到PD=2,于是得到结论【详解】点C是劣弧AB的中点,OC垂直平分AB,DA=DB=3,OD=,若POC为直角三角形,只能是OPC=90,则PODCPD,PD2=41=4,PD=2,PB=32=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,PB的长度为1或5.故选C【点睛】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键5、B【解析】根据切线长定理进行求解即可.【详解】ABC的内切圆O与AB,BC,CA分别相切于点D,E,F,AFAD2,BDBE,CECF,BE+CEBC5,BD+CFBC5,ABC的周长2+2+5+514,故选

14、B【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.6、A【解析】先在RtABD中利用勾股定理求出BD=5,在RtABF中利用勾股定理求出BF=,则AF=4-=再过G作GHBF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GHFB,得出=,即可求解【详解】解:在RtABD中,A=90,AB=3,AD=4,BD=5,在RtABF中,A=90,AB=3,AF=4-DF=4-BF,BF2=32+(4-BF)2,解得BF=,AF=4-=过G作GHBF,交BD于H,FBD=GHD,BGH=FBG,FB=FD,FB

15、D=FDB,FDB=GHD,GH=GD,FBG=EBC=DBC=ADB=FBD,又FBG=BGH,FBG=GBH,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,GHFB, =,即=,解得x=故选A【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键7、D【解析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案【详解】a2,2b1 A.a+b0,故A不符合题意;B.a|2|,故B不符合题意;C.b1,故C不符合题意;D.0,故D符合题意;故选D【点睛】本题考查了实数与数轴,利用有理数的运算是

16、解题关键8、D【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答【详解】A、2aa=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(a)2(a)3=a5,故本选项正确,故选D【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.9、B【解析】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1故选B10、D【解析】解:EC=EACAE=30,C=30,AED=30+30=60ABCD,BAF=AED=60故选D点睛:本题考查的是平行线的性质,熟

17、知两直线平行,同位角相等是解答此题的关键11、B【解析】先根据平行四边形的性质得到点的坐标,再代入反比例函数(k0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.【详解】解:A(4,0),B(1,3), ,反比例函数(k0)的图象经过点,反比例函数解析式为.OACB的面积为,正确;当时,故错误;将OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将OACB绕点O旋转180,点C的对应点落在反比例函数图象的另一分支上,正确.故选:B.【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用

18、相关性质定理是解答关键.12、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90,四边形OBGM是矩形,O

19、M=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、或【解析】设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出BAD=ACO,再利用ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论【详解】解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD直线y=2x-b于点

20、D,如图所示直线y=2x-1与x轴交点为C,与y轴交点为A,点A(0,-1),点C(,0),OA=1,OC=,AC=,cosACO=BAD与CAO互余,ACO与CAO互余,BAD=ACOAD=3,cosBAD=,AB=3直线y=2x-b与y轴的交点为B(0,-b),AB=|-b-(-1)|=3,解得:b=1-3或b=1+3故答案为1+3或1-3【点睛】本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键14、1【解析】先根据二次函数的图象和性质判断出2x5时的增减性,然后再找最大值即可.【详解】对称轴为 a10,当x1时,y随x的增大而减小,当x2

21、时,二次函数y(x1)2+2的最大值为1,故答案为:1【点睛】本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.15、线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆)【解析】(1)在上任意取一点,分别连接,;(2)分别作弦,的垂直平分线,两条垂直平分线交于点点就是所在圆的圆心【详解】解:根据线段的垂直平分线的性质定理可知:,所以点是所在圆的圆心(理由线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆):)故答案为线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的

22、轨迹是圆)【点睛】本题考查作图复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型16、30【解析】因1和2是邻补角,且1=30,由邻补角的定义可得2=1801=18030=150解:1+2=180,又1=30,2=15017、x=1【解析】移项得x1=4,x=1故答案是:x=118、3(x-2)(x+2)【解析】先提取公因式3,再根据平方差公式进行分解即可求得答案注意分解要彻底【详解】原式=3(x24)=3(x-2)(x+2)故答案为3(x-2)(x+2)【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要

23、彻底三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=38x2+34x+3;D(1,278【解析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-38m2+34m+3),则F(m,-【详解】解:(1)设抛物线的解析式为y=a(x+2)(x4),将点C(0,3)代入得:8a=3,解得:a=38y=38x2+34x+3=38(x1)2抛物线的解析式为y=38x2+34x+3,且顶点D(1,(2)

24、B(4,0),C(0,3),BC的解析式为:y=34D(1,278当x=1时,y=34+3=9E(1,94DE=278-94=9设P(m,38m2+34m+3),则F(m,四边形DEFP是平行四边形,且DEFP,DE=FP,即(38m2+34m+3)(34解得:m1=1(舍),m2=3,P(3,158【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中20、(1);(2)至少需要30分钟后生才能进入教室(3)这次消毒是有效的【解析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,

25、从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=,把点(8,6)代入即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于或等于10就有效【详解】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k10)代入(8,6)为6=8k1k1= 设药物燃烧后y关于x的函数关系式为y=(k20)代入(8,6)为6=,k2=48药物燃烧时y关于x的函数关系式为(0 x8)药物燃烧后y关于x的函数关系式为(x8) (2)结合实际,令中y1.6得x30即从消毒开始,至少需要30分钟后生才能

26、进入教室 (3)把y=3代入,得:x=4把y=3代入,得:x=16164=12所以这次消毒是有效的【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式21、(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=10 x2+100 x+2000,当x=5时,商场获取最大利润为2250元【解析】(1)根据“总利润=每件的利润每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得【详解】解:(1)依题意得:(10080 x)(100+1

27、0 x)=2160,即x210 x+16=0,解得:x1=2,x2=8,经检验:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(10080 x)(100+10 x)=10 x2+100 x+2000=10(x5)2+2250,100,当x=5时,y取得最大值为2250元答:y=10 x2+100 x+2000,当x=5时,商场获取最大利润为2250元【点睛】本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式22、BF的长度是1cm【解析】利用“两角法”证得BEFCDF,利

28、用相似三角形的对应边成比例来求线段CF的长度【详解】解:如图,在矩形ABCD中:DFCEFB,EBFFCD90,BEFCDF;,又ADBC260cm ,ABCD130cm ,AE60cmBE70cm, CD130cm,BC260cm ,CF(260BF)cm,解得:BF1即:BF的长度是1cm【点睛】本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等23、(1)140;(2)W内x2130 x,W外x2 (150a)x;(3)a1【解析】试题分析:(1)将x=1000代入函数关系式求得y,;(2)根据等量关系“利润=销售额成本”“利润=销

29、售额成本附加费”列出函数关系式;(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值试题解析:(1)x=1000,y=1000+150=140;(2)W内(y1)x(x1501)xx2130 x W外(150a)xx2x2(150a)x;(3)W内x2130 x=(x6500)2+2,由W外x2(150a)x得:W外最大值为:(7505a)2,所以:(7505a)22解得a280或a1经检验,a280不合题意,舍去,a1考点:二次函数的应用24、(1)4;(2)详见解析.【解析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)a2,b1cb2+aba+71+(2)2+74(2)a3+m,bm2cb2+aba+7(m2)2+(3+m)(m2)(3+m)+72m24m+22(m1)2(m1)20“如意数”c为非负

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论