高一数学集体备课_第1页
高一数学集体备课_第2页
高一数学集体备课_第3页
高一数学集体备课_第4页
高一数学集体备课_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、业精于勤荒于嬉,行成于思毁于随!精品文档,欢迎你阅读并下载!高一数学集体备课备课组活动时间主讲人:王安民高一数学备课组集体备课20132014学年度第1学期高一数学活动地点数学组112月11日星期三第8、9节参加人员:高一年级全体数学教师三角恒等变换(一)教材分析本章学习的主要内容是两角和与差的正弦、余弦和正切公式,二倍角正弦、余弦和正切公式的以及运用这些公式进行简单的恒等变换。三角恒等变换位于三角函数与数学变换的结合点上。通过本章的学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用。由本章的章头语所

2、介绍的,三角恒等变换既是解决生产实际问题的工具,又是学后继内容和高等数学的基础三角恒等变换是实践中经常使用的工具在力学、物理、电气工程、机械制造、图像处理,及其他科学研究和工程实践中经常会用到这些公式三角函数恒等变形的教学内容是在三角函数的教学内容基础上的,进一步研究单角的三角函数之间以及单角的三角函数与复角的三角函数之间的关系他包括同角三角函数的基本关系式、两角和与差的三角函数公式、倍角公式、半角公式等经验证明通过这一部分知识等教学,对于培养学生等运算能力、推理能力和逻辑思维能力起较大作用(二)知识要点1.两角和与差的三角函数公式:(1)cosuf028uf061uf02duf062uf02

3、9uf03dcosuf061cosuf062uf02bsinuf061sinuf062(2)cosuf028uf061uf02buf062uf029uf03dcosuf061cosuf062uf02dsinuf061sinuf0622倍角公式:sin2uf061uf03d2sinuf061cosuf062;cos2uf061uf03dcos2uf061uf02dsin2uf061uf03d2cos2uf061uf02d1uf03d1uf02d2sin2uf0613、半角公式:2tanuf061;1uf02dtan2uf0611uf02bcos2uf0611uf02dcos2uf0612;sin

4、uf061uf03d;cos2uf061uf03d22uf0611uf02dcosuf061tanuf03duf03d;2sinuf061tan2uf061uf03dasinuf061uf02bbcosuf061uf03da2uf02bb2sin(uf061uf02buf06a)(角uf06a终边过点Puf028a,buf029)。sinuf061uf062=coscosuf061uf062=sin4、辅助角公式:5、积化和差公式:1sin(uf061+uf062)+sin(uf061-uf062)21sin(uf061+uf062)-sin(uf061-uf062)21cosuf061uf0

5、62=cos(uf061+uf062)+cos(uf061-uf062)cos21sinuf061uf062=-cos(uf061+uf062)-cos(uf061-uf062)sin2(三)要点概述(1)求值常用的方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等。(2)要熟悉角的拆拼、变换的技巧,倍角与半角的相对性,如2uf061uf03duf028uf061uf02buf062uf029uf02buf028uf061uf02duf062uf029,uf061uf03duf028uf061uf02buf062uf029uf02duf062uf03duf028uf061u

6、f02duf062uf029uf02buf062,uf0612uf061uf061uf061是的半角,是的倍角等。3324(3)要掌握求值问题的解题规律和途径,寻求角间关系的特殊性,化非特殊角为特殊角,正确选用公式,灵活地掌握各个公式的正用、逆用、变形用等。(4)求值的类型:“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和差化积、积化和差、升降幂公式转化为特殊角并且消降非特殊角的三角函数而得解。“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系。

7、“给值求角”:实质上可转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角。(5)灵活运用角和公式的变形,如:2uf061uf03duf028uf061uf02buf062uf029uf02buf028uf061uf02duf062uf029,tanuf061uf02btanuf062uf03dtanuf028uf061uf02buf062uf029uf0281uf02dtanuf061tanuf062uf029等,另外重视角的范围对三角函数值的影响,因此要注意角的范围的讨论。(6)化简三角函数式常有两种思路:一是角的变换(即将多种形式的角尽

8、量统一),二是三角函数名称的变化(即当式子中所含三角函数种类较多时,一般是“切割化弦”),有时,两种变换并用,有时只用一种,视题而定。(7)证明三角恒等式时,所用方法较多,一般有以下几种证明方法:从一边到另一边,两边等于同一个式子,作差法。(四)教学要点三角恒等变换处于三角函数与数学变换的结合点和交汇点上,是前面所学三角函数知识的继续与发展,是培养学生推理能力和运算能力的重要素材本节课是在学生已学习了同角三角函数式的变换的基础上,进一步学习包含两个角的三角函数式的变换方法,体验变换思想的第一课时。本课所推导的两角差的余弦公式是本章所涉及的所有公式的源头。证明过程如下:假设OA与OB的夹角为,O

9、A(cos,sin)OB(cos,sin),由向量数量积的概念,有:,uf0aeuf0aeuf0aeuf0aeOAuf0b7OB=OAOBcosuf071=cosuf071,又由向量数量积的坐标表示有:uf075uf075OAuf0b7OBcoscos+sinsin于是有coscoscos+sinsin分类讨论如下:(1)在0,时,(2)在,2时两向量夹角2-()此时cos2-()cos()(3)在全体实数范围都可以由诱导公式转换到0,2综合三种情况,cos()coscos+sinsin。得证uf0aeuf0aeuf0aeuf0aeuf0aeuf0ae(五)考点聚焦考点:1、掌握两角和与差的正

10、弦、余弦、正切;2、理解二倍角的正弦、余弦、正切;3、了解几个三角恒等式;要点:1、两角和与差的正弦、余弦、正切公式及其变形2、二倍角的正弦、余弦、正切公式及其变形3、yuf03dAsinuf077xuf02bBcosuf077xuf0deyuf03dA2uf02bB2sin(uf077xuf02buf06a)4、几个三角恒等式的推导、证明思路与方法疑点:1、在三角的恒等变形中,注意公式的灵活运用,要特别注意角的各种变换(如uf062uf03d(uf061uf02buf062)uf02duf061,uf062uf03d(uf061uf02duf062)uf02buf061,uf061uf02b

11、uf062uf0e6uf062uf0f6uf0e6uf061uf0f6uf03duf0e7uf061uf02duf0f7uf02duf0e7uf02duf062uf0f7等)22uf0f8uf0e82uf0e8uf0f82、三角化简的通性通法:从函数名、角、运算三方面进行差异分析,常用的技巧有:切割化弦、用三角公式转化出现特殊角、异角化同角、异名化同名、高次化低次3、辅助角公式:asinxuf02bbcosxuf03d的值由tanuf071uf03da2uf02bb2sinuf028xuf02buf071uf029(其中uf071角所在的象限由a,b的符号确定,uf071角b确定)在求最值、化简时起着重要作用。a(六)小结1三角变换常用的方法技巧有切割化弦法,升幂降幂法、辅助元素法,“1”的代换法等对于三角公式要记忆准

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论