版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1已知中,点是边的中点,则等于( )A1B2C3D42已知复数,则( )A1BCD53 “读整本的书”是叶圣陶语文教育思想的重要组成部分,整本书阅读能够扩大阅读空间。某小学四年级以上在开学初开展“整本书阅读活动”,其中四年班老师号召本班学生阅读唐诗三百首并背诵古诗,活动开展一个月后,老师抽四名同学(四名同学编号为)了解能够背诵古诗多少情况,四名同学分别对老师做了以下回复:说:“比背的少”;说:“比背的多”;说:“我比背的多; 说:“比背的多”.经过老师测验发现,四名同学能够背诵古诗数各不相同,四名同学只有一个说的正确,而且是背诵的最少的一个.四名同学的编号按能够背诵数量由多到少组成的
3、四位数是( )ABCD42018年6月14日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:观看世界杯不观看世界杯总计男402060女152540总计5545100经计算的观测值.附表:0.050.0250.0100.0050.0013.8415.0246.6357.87910.828参照附表,所得结论正确的是( )A有以上的把握认为“该小区居民是否观看世界杯与性别有关”B有以上的把握认为“该小区居民是否观看世界杯与性别无关”C在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”D在犯错误的概率不超过0.
4、001的前提下,认为“该小区居民是否观看世界杯与性别无关”5已知函数 ,则函数g(x)xf(x)1的零点的个数为()A2B3C4D56已知复数为纯虚数,则ABC或D7在我国南北朝时期,数学家祖暅在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”其意思是,用一组平行平面截两个几何体,若在任意等高处的截面面积都对应相等,则两个几何体的体积必然相等根据祖暅原理,“两几何体A、B的体积不相等”是“A、B在等高处的截面面积不恒相等”的( )条件A充分不必要B必要不充分C充要D既不充分也不必要8若函数在其定义域内的一个子区间(k1,k1)内不是单调函数,则实数k的取值范围是()A1,)B,2)C
5、1,2)D1,)9对相关系数,下列说法正确的是( )A越大,线性相关程度越大B越小,线性相关程度越大C越大,线性相关程度越小,越接近0,线性相关程度越大D且越接近1,线性相关程度越大,越接近0,线性相关程度越小10已知,分别为双曲线:的左,右焦点,点是右支上一点,若,且,则的离心率为( )AB4C5D11从区间上任意选取一个实数,则双曲线的离心率大于的概率为( )ABCD12已知随机变量服从二项分布,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13要用三根数据线将四台电脑A,B,C,D连接起来以实现资源共享,则不同的连接方案种数为_14设,则_.15若(其中i是虚数单位),
6、则实数_.16若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)统计表明某型号汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数为(1)当千米/小时时,行驶千米耗油量多少升?(2)若油箱有升油,则该型号汽车最多行驶多少千米?18(12分)某校位同学的数学与英语成绩如下表所示:学号数学成绩英语成绩学号数学成绩英语成绩将这位同学的两科成绩绘制成散点图如下:(1)根据该校以往的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩为.考试结束后学校经过调查发现学号为的同学与学号为的同学(分别对应散点图中的、)在英语考试中作弊
7、,故将两位同学的两科成绩取消,取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;(2)取消两位作弊同学的两科成绩后,求数学成绩与英语成绩的线性回归方程,并据此估计本次英语考试学号为的同学如果没有作弊的英语成绩(结果保留整数).附:位同学的两科成绩的参考数据:,.参考公式:,.19(12分)已知(1)求及的值;(2)求证:(),并求的值.(3)求的值.20(12分)已知函数有两个不同的零点,.(1)求的取值范围;(2)求证:.21(12分)对某班50名学生的数学成绩和对数学的兴趣进行了调查,统计数据如下表所示:对数学感兴趣对数学不感兴趣合计数学成绩好17825数学成绩一般52
8、025合计222850(1)试运用独立性检验的思想方法分析:学生学习数学的兴趣与数学成绩是否有关系,并说明理由(2)从数学成绩好的同学中抽取4人继续调查,设对数学感兴趣的人数为,求的分布列和数学期望附:0.0500.0100.0013.8416.63510.82822(10分)党的十九大报告提出,转变政府职能,深化简政放权,创新监管方式,增强政府公信力和执行力,建设人民满意的服务型政府,某市为提高政府部门的服务水平,调查群众对两个部门服务的满意程度.现从群众对两个部门的评价(单位:分)中各随机抽取20个样本,根据评价分作出如下茎叶图:从低到高设置“不满意”,“满意”和“很满意”三个等级,在内为
9、“不满意”,在为“满意”,在内为“很满意”.(1)根据茎叶图判断哪个部门的服务更令群众满意?并说明理由;(2)从对部门评价为“很满意”或“满意”的样本中随机抽取3个样本,记这3个样本中评价为“很满意”的样本数量为,求的分布列和期望.(3)以上述样本数据估计总体数据,现在随机邀请5名群众对两个部门的服务水平打分,则至多有1人对两个部门的评价等级相同的概率是多少?(计算结果精确到0.01)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用正弦定理求出的值,用基底表示,则可以得到的值.【详解】解:在中,由正弦定理得,即,解
10、得,因为,所以故选B.【点睛】本题考查了正弦定理、向量分解、向量数量积等问题,解题的关键是要将目标向量转化为基向量,从而求解问题.2、C【解析】.故选3、A【解析】分别假设四位同学是说正确的人,排除矛盾情况,推理得到答案【详解】假设1正确,其他都错误,则1最少,比背的少,比背的少,3比4少,3比2少顺序为:4231假设2正确,其他错误,则2最少,根据1知:2比4多,矛盾,排除假设3正确,其他错误,则3最少,根据2知:1比3少,矛盾,排除假设4正确,其他错误,则4最少,根据3知:3比4少,矛盾,排除故答案选A【点睛】本题考查了逻辑推理,依次假设正确的人,根据矛盾排除选项是解题的关键.4、C【解析
11、】分析:根据题目的条件中已经给出这组数据的观测值,把所给的观测值同节选的观测值表进行比较,发现它大于7.879,在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”详解:由题意算得, ,参照附表,可得在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”故选:A点睛:本题考查独立性检验的应用,属基础题5、B【解析】由g(x)xf(x)10得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论【详解】由g(x)xf(x)10得xf(x)1,当x0时,方程xf(x)1不成立,即x0,则等价为f(x),当2x
12、4时,0 x22,此时f(x)f(x2)(1|x21|)|x3|,当4x6时,2x24,此时f(x)f(x2) |x23|x5|,作出f(x)的图象如图,则f(1)1,f(3)f(1),f(5)f(3),设h(x) ,则h(1)1,h(3),h(5)f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B【点睛】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键6、B【解析】因为复数为纯虚数,且 ,所以,故选B.7、A【解析】先阅读题意,再由原命题与其逆否命题的真假及充分必要条件可得解【详解】由已知
13、有”在任意等高处的截面面积都对应相等”是“两个几何体的体积必然相等“的充分条件不必要条件,结合原命题与其逆否命题的真假可得:“两几何体A、B的体积不相等”是“A、B在等高处的截面面积不恒相等”的充分不必要条件,故选:A【点睛】本题考查了阅读能力、原命题与其逆否命题的真假及充分必要条件,属中档题。8、D【解析】利用导数研究函数的极值性,令极值点属于已知区间即可.【详解】所以时递减,时,递增,是极值点,因为函数在其定义域内的一个子区间(k1,k1)内不是单调函数,所以,即,故选:D.【点睛】本题主要考查利用导数研究函数的极值,其中考查了利用导数研究函数的单调性,属于中档题.9、D【解析】根据两个变
14、量之间的相关系数r的基本特征,直接选出正确答案即可【详解】用相关系数r可以衡量两个变量之间的相关关系的强弱,|r|1,r的绝对值越接近于1,表示两个变量的线性相关性越强,r的绝对值接近于0时,表示两个变量之间几乎不存在相关关系,故选D【点睛】本题考查两个变量之间相关系数的基本概念应用问题,是基础题目10、C【解析】在中,求出,然后利用双曲线的定义列式求解【详解】在中,因为,所以,则由双曲线的定义可得所以离心率,故选C.【点睛】本题考查双曲线的定义和离心率,解题的关键是求出,属于一般题11、D【解析】分析:求出m的取值范围,利用几何概型的计算公式即可得出.详解:由题意得,解得,即 .故选:D.点
15、睛:几何概型有两个特点:一是无限性;二是等可能性基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率12、D【解析】表示做了次独立实验,每次试验成功概率为,则选二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题目可以联想到正方形的四个顶点,放上四台电脑,正方形的四条边和它的两条对角线,六条线中选3条,满足题意的种数为:全部方法减去不合题意的方法来解答.【详解】解:画一个正方形和它的两条对角线,在这6条线段中,选3条的选法有种.当中,4个直角三角形不是连接方案,故不同的连接方案共有种.故答案为:.【点睛】连线、搭桥、几何体
16、棱上爬行路程、正方体顶点构成四面体等,是同一性质问题,一般要用排除法.14、1.【解析】分析:首先求得复数z,然后求解其模即可.详解:由复数的运算法则有:,则:.点睛:本题主要考查复数的运算法则,复数模的计算等知识,意在考查学生的转化能力和计算求解能力.15、【解析】由可知,根据复数的乘法运算,及复数相等的概念即可求解.【详解】因为所以所以 【点睛】本题主要考查了复数的乘法运算,复数相等的概念,属于中档题.16、【解析】分析:由,得展开式的每一项的系数为,代入,即可求解.详解:由题意,得展开式的每一项的系数为,所以又由,且,所以.点睛:本题主要考查了二项式定理的应用,其中对二项展开式的灵活变形
17、和恰当的赋值,以及熟练掌握二项式系数的性质是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)11.95(升) (2) 千米【解析】分析:(1)由题意可得当x=64千米/小时,要行驶千米需要小时,代入函数y的解析式,即可得到所求值;(2)设22.5升油能使该型号汽车行驶a千米,代入函数y的式子,可得令,求出导数和单调区间,可得h(x)的最小值,进而得到a的最大值详解:(1)当千米/小时时,要行驶千米需要小时,要耗油 (升) (2)设升油能使该型号汽车行驶千米,由题意得,所以 ,设则当最小时,取最大值,
18、令当时,当时,故当时,函数为减函数,当时,函数为增函数,所以当时, 取得最小值,此时取最大值为所以若油箱有升油,则该型号汽车最多行驶千米点睛:解决函数模型应用的解答题,还有以下几点容易造成失分:读不懂实际背景,不能将实际问题转化为函数模型对涉及的相关公式,记忆错误在求解的过程中计算错误.另外需要熟练掌握求解方程、不等式、函数最值的方法,才能快速正确地求解含有绝对值的问题突破口在于分段去绝对值,分段后在各段讨论最值的情况.18、(1)其余学生的数学平均分、英语平均分都为分;(2)数学成绩与英语成绩的线性回归方程,本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【解析】(1)利用平均数
19、的公式求出这名学生的数学成绩之和以及英语成绩之和,再减去、号学生的数学成绩和英语成绩,计算其余名学生的数学成绩平均分和英语成绩的平均分;(2)设取消的两位同学的两科成绩分别为、,根据题中数据计算出和,并代入最小二乘法公共计算出回归系数和,可得出回归方程,再将号学生的数学成绩代入回归直线方程可得出其英语成绩.【详解】(1)由题名学生的数学成绩之和为,英语成绩之和为,取消两位作弊同学的两科成绩后,其余名学生的数学成绩之和,其余名学生的英语成绩之和为.其余名学生的数学平均分,英语平均分都为;(2)不妨设取消的两位同学的两科成绩分别为、,由题,数学成绩与英语成绩的线性回归方程.代入学号为的同学数学成绩
20、 得,本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【点睛】本题考查平均数的计算,同时也考查了回归直线方程的求解,解题的关键就是理解最小二乘法公式,考查计算能力,属于中等题.19、(1);(2)见解析;(3).【解析】(1)用赋值法可求解,令可求得,令可求得(2)左边用阶乘展开可证再由己证式结合裂项求和,可求解(3)法一:先证公式再用公式化简可求值法二:将两边求导,再赋值x=1和x=-1可求解【详解】(1)当时,(*)在(*)中,令得 在(*)中,令得,所以(2)证明:因为 , 由二项式定理可得 所以 因为,所以(3)法一:由(2)知 因为,所以 + 则,所以 法二:将两边求导,
21、得 令得;令得.得解得,所以.【点睛】本题考查二项式定理中的赋值法求值问题,这是解决与二项式定理展开式中系数求和中的常用方法20、(1);(2)见解析【解析】分析:(1)求出函数的导数,通过讨论的范围求出函数的单调区间,从而求出的范围即可;(2)构造函数,则可证当时,在上,有,即.将代入上面不等式中即可证明.详解:(1),若,则,在上单调递增,至多有一个零点,舍去;则必有,得在上递减, 在上递增,要使有两个不同的零点,则须有(严格来讲,还需补充两处变化趋势的说明:当时,;当时,).(2)构造函数,则.当时,但因式的符号不容易看出,引出辅助函数,则,得在上,当时,即,则,即,得在上,有,即.将代入上面不等式中得,又,在上,故,.点睛:本题考查了导数的综合应用及恒成立问题,同时考查了数形结合的思想应用,属于难题21、(1)有99.9%的把握认为有关系,理由详见解析;(2)分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临沂下载货运从业资格证模拟考试系统试题
- 中国道路设施连接杆项目投资可行性研究报告
- 中国变速传动轴承项目投资可行性研究报告
- 2025外商投资有限公司设立合同模板
- 上海外国语大学贤达经济人文学院《材料成型装备及自动化》2023-2024学年第一学期期末试卷
- 上海思博职业技术学院《证券投资》2023-2024学年第一学期期末试卷
- 2025洗碗工的合同书范文
- 上海思博职业技术学院《合唱团排练5》2023-2024学年第一学期期末试卷
- 上海师范大学天华学院《计算机网络A》2023-2024学年第一学期期末试卷
- 上海商学院《制图基础与计算机绘图》2023-2024学年第一学期期末试卷
- 低空经济的商业化路径分析
- 七年级上册道德与法治2023-2024期末试题附答案系列
- 代账公司会计主管年终总结
- 创新思维训练学习通超星期末考试答案章节答案2024年
- 网络与信息安全管理员(高级技师)资格理论考试题及答案
- 广东省肇庆市2023-2024学年高二上学期期末教学质量检测试题 政治试题 附答案
- 街道社区城管工作目标考核细则
- 国开电大专科《Dreamweaver网页设计》2023-2024期末试题及答案(试卷号:2445)
- 体育概论(第二版)课件第三章体育目的
- 2024年《中华人民共和国监察法》知识测试题库及答案
- 科学与文化的足迹学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论