湖北省枣阳市第七中学2022年高二数学第二学期期末统考试题含解析_第1页
湖北省枣阳市第七中学2022年高二数学第二学期期末统考试题含解析_第2页
湖北省枣阳市第七中学2022年高二数学第二学期期末统考试题含解析_第3页
湖北省枣阳市第七中学2022年高二数学第二学期期末统考试题含解析_第4页
湖北省枣阳市第七中学2022年高二数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若(为虚数单位),则复数()ABCD2下列函数为奇函数的是( )ABCD3下列命题中正确的个数( )“x0,2xsinx”的否定是“x00,2x0sinx0”;用相关指数

2、R2可以刻画回归的拟合效果,A0B1C2D34设命题,则为( )ABCD5在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:每人可发球7次,每成功一次记1分;若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是()ABCD6一个几何体的三视图如右图所示,则这个几何体的体积为( )ABCD87某校学生一次考试成绩X(单位:分)服从正态分布N(110,102),从中抽取一个同学的成绩,记“该同学的成绩满足90110”为事件A,记“该同学的成绩满足

3、80100”为事件B,则在A事件发生的条件下B事件发生的概率P(B|A)()附:X满足P(X+)0.68,P(2X+2)0.95,P(3+3)0.1ABCD8 “,”是“双曲线的离心率为”的( )A充要条件B必要不充分条件C既不充分也不必要条件D充分不必要条件9已知函数,若有两个极值点,且,则的取值范围是( )ABCD10已知向量,若,则实数 ( )ABCD11已知服从正态分布的随机变量,在区间、和内取值的概率分别为、和.某企业为名员工定制工作服,设员工的身高(单位:)服从正态分布,则适合身高在范围内员工穿的服装大约要定制( )A套B套C套D套12如果小明在某一周的第一天和第七天分别吃了3个水

4、果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有( )A种B种C种D种二、填空题:本题共4小题,每小题5分,共20分。13引入随机变量后,下列说法正确的有:_(填写出所有正确的序号).随机事件个数与随机变量一一对应;随机变量与自然数一一对应;随机变量的取值是实数.14我国南宋数学家杨辉所著的详解九章算术中,用图的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”现将杨辉三角形中的奇数换成,偶数换成,得到图所示的由数字和组成的三角形数表,由上往下数,记第行各数字的和为,如,则_

5、15已知边长为的正的顶点在平面内,顶点,在平面外的同一侧,点,分别为,在平面内的投影,设,直线与平面所成的角为.若是以角为直角的直角三角形,则的最小值为_16圆锥的母线长是,高是,则其侧面积是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某机构为了调查某市同时符合条件与(条件:营养均衡,作息规律;条件:经常锻炼,劳逸结合)的高中男生的体重(单位:)与身高(单位: )是否存在较好的线性关系,该机构搜集了位满足条件的高中男生的数据,得到如下表格:身高/体重/根据表中数据计算得到关于的线性回归方程对应的直线的斜率为.(1)求关于的线性回归方程(精确到整数部分);(2

6、)已知,且当时,回归方程的拟合效果较好。试结合数据,判断(1)中的回归方程的拟合效果是否良好?(3)该市某高中有位男生同时符合条件与,将这位男生的身高(单位:)的数据绘制成如下的茎叶图。若从这位男生中任选位,记这位中体重超过的人数为,求的分布列及其数学期望(提示:利用(1)中的回归方程估测这位男生的体重).18(12分)已知椭圆:,过点作倾斜角互补的两条不同直线,设与椭圆交于、两点,与椭圆交于,两点.(1)若为线段的中点,求直线的方程;(2)记,求的取值范围.19(12分)高二年级数学课外小组人:(1)从中选一名正组长和一名副组长,共有多少种不同的选法?(2)从中选名参加省数学竞赛,有多少种不

7、同的选法?20(12分)已知函数.(1)若不等式在上有解,求的取值范围;(2)若对任意的均成立,求的最小值.21(12分)某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图记成绩不低于90分者为“成绩优秀”(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有

8、关0.4000.2500.1500.1000.0500.0250.7081.3232.0722.7063.8415.024参考公式: 22(10分)已知函数有两个零点,.()求的取值范围;()证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由可得:,故选B.2、A【解析】试题分析:由题意得,令,则,所以函数为奇函数,故选A考点:函数奇偶性的判定3、C【解析】根据含量词命题的否定可知错误;根据相关指数的特点可知R2越接近0,模型拟合度越低,可知错误;根据四种命题的关系首先得到逆命题,利用不等式性质可知正确;分别在

9、m=0和m0的情况下,根据解集为R确定不等关系,从而解得m【详解】根据全称量词的否定可知“x0,2xsinx”的否定是“x相关指数R2越接近1,模型拟合度越高,即拟合效果越好;R2越接近若“ab0,则3a3b0当m=0时,mx2-2当m0时,若mx2-2m+1解得:m1,则正确.正确的命题为:本题正确选项:C【点睛】本题考查命题真假性的判断,涉及到含量词命题的否定、四种命题的关系及真假性的判断、相关指数的应用、根据一元二次不等式解集为R求解参数范围的知识.4、D【解析】分析:根据全称命题的否定解答.详解:由全称命题的否定得为:,故答案为D.点睛:(1)本题主要考查全称命题的否定,意在考查学生对

10、这些知识的掌握水平.(2) 全称命题:,全称命题的否定():.5、B【解析】明确恰好得5分的所有情况:发球四次得分,有两个连续得分和发球四次得分,有三个连续得分,分别求解可得.【详解】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率,所求概率;故选B.【点睛】本题主要考查相互独立事件的概率,题目稍有难度,侧重考查数学建模和数学运算的核心素养.6、C【解析】分析:由三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,即可利用体积公式,求解几何体的体积

11、详解:由给定的三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,所以该几何体的体积为,故选C点睛:本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解7、A【解析】利用条件概率公式,即可得出结论.【详解】由题意,所以,故选A项.【点睛】本题考查条件概率的计算,正态分布的简单应用,属于简单题.8

12、、D【解析】当时,计算可得离心率为,但是离心率为时,我们只能得到,故可得两者之间的条件关系.【详解】当时,双曲线化为标准方程是,其离心率是;但当双曲线的离心率为时,即的离心率为,则,得,所以不一定非要.故“”是“双曲线的离心率为”的充分不必要条件.故选D.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.9、C【解析】由可得,根据极值点可知有两根,

13、等价于与交于两点,利用导数可求得的最大值,同时根据的大小关系构造方程可求得临界状态时的取值,结合单调性可确定的取值范围.【详解】,令可得:.有两个极值点,有两根令,则,当时,;当时,在上单调递增,在上单调递减,令,则,解得:,此时.有两根等价于与交于两点,即的取值范围为.故选:.【点睛】本题考查根据函数极值点个数及大小关系求解参数范围的问题,关键是明确极值点和函数导数之间的关系,将问题转化为直线与曲线交点问题的求解.10、B【解析】由题得,解方程即得解.【详解】因为,所以.故选B【点睛】本题主要考查向量垂直的坐标表示,意在考查学生对该知识的理解掌握水平和分析推理能力.11、B【解析】由可得,则

14、恰为区间,利用总人数乘以概率即可得到结果.【详解】由得:,又适合身高在范围内员工穿的服装大约要定制:套本题正确选项:【点睛】本题考查利用正态分布进行估计的问题,属于基础题.12、D【解析】试题分析:小明共有6次选择,因为第一天和第七天均吃3个水果,所以在这6次选择中“多一个”和“少一个”的次数应相同、“持平”次数为偶数当6次选择均为“持平”时,共有种方案;当6次选择中有4次“持平”时,选择“多一个”和“少一个”各一次,共有种方案;当6次选择中有2次“持平”时,选择“多一个”和“少一个”各2次,共有种方案;当6次选择中有0次“持平”时,选择“多一个”和“少一个”各3次,共有种方案.综上可得小明在

15、这一周中每天所吃水果个数的不同选择方案共有种方案,故D正确.考点:排列组合,考查分类讨论思想.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】要判断各项中对随机变量描述的正误,需要牢记随机变量的定义.【详解】引入随机变量,使我们可以研究一个随机实验中的所有可能结果,所以随机变量的取值是实数,故正确.【点睛】本题主要考查随机变量的相关定义,难度不大.14、64.【解析】将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,由此可知全奇数的行出现在2n的行数,即第n次全行的数都为1的是第2n行126272,故可得所以第128行全是1

16、,那么第127行就是101010101,第126行就是11001100110011,问题得以解决【详解】解:由题意,将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,由此可知全奇数的行出现在2n的行数,即第n次全行的数都为1的是第2n行126272,故可得第128行全是1,那么第127行就是101010101,第126行就是11001100110011,11又126431+2,S126231+264,故答案为:64点睛:本题考查归纳推理,属中档题.15、【解析】分析:由题意找出线面角,设BB=a,CC=b,可得ab=1,然后由a的变化得到

17、AB的变化范围,从而求得tan的范围详解:如图,由CC,AB,得ABCC,又ABAC,且ACCC=C,AB面ACC,则=BCA,设BB=a,CC=b,则AB1=4a1,AC1=4b1,设BC=c,则有,整理得:ab=1|BB|CC|,ab,tan=,在三角形BBA中,斜边AB为定值1,当a最大为时,AB取最小值,tan的最小值为当a减小时,tan增大,若a1,则b1,在RtACC中出现直角边大于等于斜边,矛盾,a1,此时AB,即tantan的范围为即的最小值为故答案为:点睛:求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积

18、法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.16、【解析】计算出圆锥底面圆的半径,然后利用圆锥的侧面积公式可计算出圆锥的侧面积.【详解】由题意知,圆锥的底面半径为,因此,圆锥的侧面积为,故答案为:.【点睛】本题考查圆锥的侧面积,解题的关键就是要求出圆锥的母线长和底面圆的半径,利用圆锥的侧面积公式进行计算,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) ;(2)见解析 ;(3)见解析.【解析】分析:(1)依题意可知,又,即可得到答案;(2)求出即可;(3)的可能取值为

19、,分别求出对应的概率即可.详解:(1)依题意可知,故关于的线性回归方程为.(2),故(1)中的回归方程的拟合效果良好.(3)令,得,故这位男生的体重有为体重超过.的可能取值为.则的分布列为点睛:求回归方程,关键在于正确求出系数, ,由于, 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误(注意线性回归方程中一次项系数为,常数项为,这与一次函数的习惯表示不同18、(1);(2)【解析】(1)设直线l1的方程为y1=k(x1),根据韦达定理和中点坐标公式即可求出直线的斜率k,问题得以解决,(2)根据弦长公式分别求出|AB|,|CD|,再根据基本不等式即可求出【详解】(1)设直线的斜率为

20、,方程为,代入中,.判别式 .设,则.中点为,则.直线的方程为,即.(2)由(1)知 .设直线的方程为.同理可得. .令,则,.在,分别单调递减,或.故或.即.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值在利用代数法解决最值与范围问题时常从以下几个方面考虑:利用判别式来构造不等关系,从而确定参数的取值范围;利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;利用基本不等式求出参数的取值范围;利用函数的值域的

21、求法,确定参数的取值范围19、(1)90(2)45【解析】(1)应用排列进行计算;(2)应该用组合来进行计算。【详解】(1)选一名正组长和一名副组长,因为正组长与副组长属于不同的职位,所以应该用排列,.(2)选名参加省数学竞赛,都是同样参加数学竞赛,所以应该用组合,.【点睛】本题考查了排列和组合的基本概念和应用,属于基础题。20、(1);(2) .【解析】(1)先求的最大值,然后通过不等式寻找的范围(2)由(1)知当时,,这样可得,于是由且,得,可放大为 ,放缩的目的是为了和可求因此的范围可得【详解】(1),由定理可知,函数的单调递增区间为,递减区间为 .故,由题意可知,当,解得,故; 当,由

22、函数的单调性,可知在恒单调增,且恒大于零,故无解; 综上:;(2)当时,,,且, , , ,的最小值为 .【点睛】本题考查用导数研究证明不等式,研究不等式恒成立问题解题中一要求有较高的转化与化归能力,二要求有较高的运算求解能力第(1)小题中在解不等式时还要用到分类讨论的思想,第(2)小题用到放缩法,而且这里的放缩的理论根据就是由第(1)小题中函数的性质确定的,发现问题解决问题的能力在这里要求较高,本题难度较大21、(1);(2)见解析【解析】分析:(1)不低于86的成绩有6个,可用列举法列出任取2个的所有事件,计算出概率(2)由茎叶图中数据得出列联表中数据,再根据计算公式计算出得知结论详解: (1)由题意知本题是一个等可能事件的概率,试验发生包含的事件是从不低于86分的成绩中随机抽取两个包含的基本事件是:(86,91), (86,96), (86

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论