




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、比值法与特别规解题(Ratiomethodandunconventionalsolution)CollectedbyoneselfMistakesareunavoidableForreferenceonlyIncaseoferrorPleasecorrectme!ThankyouRatiomethodandunconventionalsolutionGuangzhousevenDuHoushengClassroomteachingisthemainchannelofqualityeducation,andthekeytoqualityeducationistooptimizetheproces
2、sofclassroomteaching,guidestudentstoparticipateactivelyinthelearningprocess,learntolearnandbehappytolearnTrulybecomethesubjectoflearningInmathematicsclassroomteachingProblemsolvingteachingisthemostimportantandmostimportantcontentofteachingThinkingactivitiesarefullyreflectedintheprocessofsolvingprobl
3、emsAndfullydevelopedStudentsshouldbeinproblemsolvingteachingLearntothink,learntomakeWedontrequireeveryteacherandstudenttodoadvancedresearch,saysPolya,thegreatestmatheducationthinkerofthecenturyHoweverMathematicalproblems,unconventionalsolutions,andrealcreativeworkWhatweneedtomasterisnotknowledgegain
4、edbymemoryaloneItistherealknowledgethatisreadilyavailableinsolvinginterestingproblemsThatistosayInproblemsolvingteachingUnconventionalsolutionscanbeusedtostimulatecreativityImprovetheenthusiasmandinitiativeofstudentsInthesolutionteachingofplanegeometryinjuniorhighschoolRatiomethodCanachievesomegeome
5、tricproblemsofunconventionalsolutionEffectivelyimprovestudentsproblem-solvingabilityArightangledtrianglewith30degreesand45degreesanglesafterstudyingrighttriangleSolvesuchaproblem:RtDeltaABCAngleC=90degreesAngleB=30degreesIfBC=50SeekthelengthofthebevelABMoststudentswillsetAB=xAC=ThereforeListequation
6、s:XieAB=DonttrytoseethePythagoreantheoremThestudentthoughtforamomentIfABisset,XCOS30=thismethodthanbyusingthePythagoreantheoremofgoodBecausethereisnoneedtosolvetheequationoftwovariablesAskthestudentagain:canyouseeAB=atonce?NoBecausethenumberistoobigChangeasmallernumberSuchasBC=3IthinkIcanusemymental
7、arithmetictofigureoutAB=2AdlocumThePythagoreantheoremandtrigonometricfunctionsaretheconventionaltextbooksolutionrequirementsByusingtheratiorule,averysimpleandunconventionalmethodcanbeobtainedSoIcametofindthescalewiththestudentsItsreallyeasyFromsmalltolargeTheratioofthethreesidesis1:2Ifashortstraight
8、edgeisknown,aisusedYes,a:a:2aThereforeJustknowtheshortstraightedgeaTherestofthetwosidesshouldbeaand2A;knowthatthebevelisa?TheothertwosidesareandInordertomasterthismethodJusttenminutesofpractice:shortandlongMultipliedbymultiples(and2);knownlength;shortdurationDividedbymultiples(and2)SimilarproblemsWa
9、nttoseeitallatonceAseasyasbreathingSowecallthisexpirationComeassoonasyoucallOpenyourmouth(asbelow)OfcourseTheisoscelesrighttriangleisthesameMultipliedbyordividedbymultiplesSimpler!(picturebelow)Howusefulisthisexhalation?Letshaveatry:Example1.,asshowninFig.KnownDC=3SeekthelengthofeachlinesegmentSolut
10、ion:AX30degrees,45degreesB50,D,X,C,BC=XCalloutall!Example2.,asshowninFig.KnownBD=50FindthelengthoflineACSolution:letAC=xThenDC=xBC=xSo50+x=xX=50/(-1)=25(+1)ThisisobviouslybetterthanusingtrigonometricfunctionsAAx30degrees45degreesB,x,D,x,CExample3.,asshowninFig.KnownBC=3+FindthelengthoflineABandACSol
11、ution:letAD=DC=xThenBD=xGotx+x=3+x=1AB=2x=2=AC=xExample4.,asshowninFig.RtDeltaABCAngleC=90degreesAngleB=15degreesRequest:tg15degreesvalueSolution:asADTheangleADC=30degreesLetAC=1ThenAD=BD=2DC=BC=2+tg15=2-*Cantheybeextended?OtherspecialrightangledtrianglesseemtobeokForexample,therearemorethanPythagor
12、eannumbertrianglevalue3:4:5;5:12:13;7:24:25WaitAnyrightangledtriangle?No,istherearatio?Giveitatry:Setbevelto1Yes,thebeveledgeisaYes:Setthestraightedgeto1Yes,thestraightedgeisaYes:Example5.takeadvantageofthegraphaboveBythePythagoreantheoremProvablesin2A+cos2A=1(squarerelation)DefinedbytangentsProvabl
13、etgA=(ratiorelation)ByA+B=90degreesGetsinA=cosBTgA=ctgB(mutualredundancy)Example6.,asshowninFig.RtDeltaABCAngleD=90degreesAlpha/B=Beta/ACD=BC=mForAD(thisisthepromotionofexample6)Solution:letAD=xCD=xctgbetaBD=xctgalpham+xctg=xctgalphabetax=InthemiddleschoolmathematicsteachingmaterialTherearesomanysub
14、jectswith30degreesand45anglesBreatheoutmakesusfast,accurateandrelaxedTwo.Theunconventionalsolutionofarclengthandsectorialarea1.Theteacheraskedthestudent,length?Yes.whatistheformulaforarcHowdidyougetit?Becauseofthecenterofthecircleat360degrees,thearcisthecircumferenceofthecircleTherefore,thecenteroft
15、hearcat1degreesisthelengthofthearcThus,thecenterofthearcatndegreesisthelengthofthearcTheteacheraskedthestudent,whatstheformulaforsectorialarea?Therearetwo.Sfan=andSfan=LRThelatterformulaisusedwhenthearclengthandradiusareknownWiththesetwosetsofformulasStudentsknowthecenterofthecircleandtheradiusThere
16、isnodifficultyinfindingthelengthofthearcandtheareaofthefanBut.VeryboringItsnotfunnyatallThestudentsaidAndImafraiditllsoonbeforgottenTheteacherthenasked,canyouexportthisresultinanyotherway?Thestudentsaid,howcouldthatbe?CurvilinearcalculationInadditiontothecircleperimeterandthecircleareaformulaWedonth
17、aveanyotherwayYoucanexportformulaslikethisIthinkitsverycleverTheteachersaid,ifyouknow,thecircumferenceofacircleis16PI.Thearcofthefanpairis2piCanyoutellthecenterofthefan,theangle,thedegree,andthefan-shapedareaatonce?Canyoubreatheout?Itsabitdifficult.ThereforeTheteacherandthestudentgobacktothedefiniti
18、onAllrightThedefinitionisactuallytousetheratiotoobtaintheformulaItstheratioagain!ThismeansInasectorThecenteranglenispartPerigonisallispartofthearclength;Thecircumferenceisall;thefanareaispartTheroundareaisthewholeIfyouset=kthatInthen,L,sthesepartsTherespartof=kallThiskiseasytobreatheoutAndthiswholei
19、salsoveryfamiliarThereforeThetitleabovecanbeexhaled:thearclengthis2piThecircumferenceofthecircleis16piSok=?Thecenterangleis=45(degree)FanareashouldbefirstroundareaTheperimeteris16piRadiusis8Sotheareaofthecircleis64piThefanareais*64PI=8piJustalittlemoreskilledItseasiertobreatheoutTheteacherspent10mor
20、eminuteswithhisstudents:AnglenRatioKN:360RadiusrArclengthLK.2RpiFanareasK.R2pidegreesRdegreesRdegreesRdegreesRdegreesRdegreesRdegreesRdegreesRdegreesRdegreesRItsmoreinterestingnowAndWedonthavetorelyonformulasJustrememberthepartandthewholerelationshipWhenwillitbecalculated?ThestudentsaidTheteachersai
21、d,actually.TheformulaisalsoamongtheseratiosItseasytosee,thestudentsaid:Thatis,s=lrActualcalculationtimeUsingn=k*360L=k*2piRS=k*PIR2ObviouslyfastandaccurateTheteachersaid,canyouapplythisresulttootherproblems?Thestudentlookedatthefanagain.theresachordhere,ABItshouldbeapartofaregularpolygoninscribedina
22、circleAndbowItisacircleminusthepartoftheremainingareaoftheregularpolygonThereareaABCareaItispartoftheareaofaregularpolygoninscribedinacircleTheirratiosarealsoequaltoKIfconcentriccirclesareusedGetaringThentheratiooftheareaoftheshadowtotheareaoftheringisalsoKThereisaprobleminthebook(geometrythird,187p
23、ages,11questions)WetrytocomputewiththisresultcasesofknowntwoconcentriccircleswitharadiusoftwowastruncatedbytheAB(-)=10PIcmCD(-)=6PIcmAC=12cmagainTheareaoftheshadedpartSolution:settwocircleradiiofRandR,respectivelydoes:Xier=18R=30dreamsk=*(CM)AtthistimeOnestudentsaid,thefigureisabitlikeatrapezoid.Kno
24、wthebottom,bottom,andheightIfusedTheresultisexactlythesame!ThestudentsareveryhappyHowsimpleisthat?!Isitacoincidence?TheteacherdoesntbelieveitThestudentsaid,wecanprobablyproveit.Thestudentsproofisasfollows:Proof:setupWellthen:ThereisS=(R-r)indeedItsliketrapezoidalareaformula!Thearclengthandfanareacan
25、beexhaledSo,cantheareaofthebowbeexhaled?Theareaoftheisoscelesrighttriangleis=a2Theareaofanequilateraltriangle=Thearcuateareaatleast60degrees,90degrees,and120degreesarcscanalsobeexhaledAslongasthefanareaandtheareaofthetrianglearerespectivelyexhaled(inabowof120degrees)TheAOBareaisreplacedbytheequilate
26、ralDeltaOBCarea)Inthecalculationofthearchareaandtheareaofthecompositefigure(shadowpart)TheincidenceofthesearchareasHighTheconnotationofratioisbroadandprofoundTheratiomethodisconciseandharmoniousUtilizationratioTheresultsobtainedareoftenthemostintuitiveandpracticalMiddleschoolmathematicsteachingmater
27、ialMethodsandmaterialsthatenableustobecreativeItisfarmorethantheratiomethodasyou?MaterialcanbefoundalmosteverywhereProduceinspirationthattriggersourcreativityTheunconventionalsolutiontomathematicalproblemsThree.Understandingofunconventionalsolutionswhataretheunconventionalsolutionstomathematicalprob
28、lems?Itseemsthattheteachersfeelthatitisself-evidentButIcantsayitsdefinitionWhatdidnotreadthecompletediscussionofthisproblem(includingteachingsyllabus,teachingreference,journalpapers,relevantteachingworks)MypersonalunderstandingThisisbecauseunconventionalsolutionshaverelativityTherearethreesourcesofg
29、eneralproblem-solvingmethods:oneisthemethodthatmustbemasteredbyteachingmaterialsAsthePythagoreantheorem,quadraticequationwithoneunknowndistributionmethod,crossmultiplication;twoisthroughthemethodofsolvingaclassofproblemsSuchasformulaetc.Thethreeislogic,strictnessandprecisionMiddleschoolalgebraandgeo
30、metrytextbooksAlmosteveryunitoflearningprocessThemethodofsolvingthisunitisgivenbytheteachingmaterialAndaskstudentstomasteritTheseproblem-solvingmethodsItformstheso-calledregularproblem-solvingmethodsProblemsolvingmethodsthatvaryfromtextbookrequirementsItcanalsobecalledunconventionalproblem-solvingme
31、thodShouldseeConventionalandunconventionalcanbetransformedintoeachotherUnconventionalactuallystemsfromtheconventionalInthelegendofGauss,forexampleFrom1to100andGaussusedthemethodofarithmeticprogressionsummationThisisunconventionalforschoolchildrenAndinthechapterofaseriesofstudiesItsstandardpracticeAn
32、othermethodofsolvingproblems,suchascombinationofnumbersandshapesInsomefunctionalproblemsandinthecomplexnumberproblemItsunconventionalInanalyticgeometryIsthemosttypicalroutineAgain,asmentionedabove,arectangulartrianglewithaspecialangleiscalculatedbytheratiomethodOnceinteaching,studentsshouldbevalueda
33、ndmasteredIthasbecomearoutineproblemsolvingmethodEventhefirstroutineItmaybebecausethereisnostrictlinebetweenregularsolutionsandunconventionalsolutionsTherefore,unconventionalproblem-solvingisdifficulttodefineItmaybeunderstoodthatasimplemethodofsolvingproblemsthatisnotrequiredbytheteachingmaterialand
34、thattheteacherorthestudentusuallydoesnotexpectisunconventionalSimplicityisemphasizedhereWithoutsimplicityImafraiditshardforeveryonetoadmitthattheyareunconventionalTheessenceofunconventionalproblemsolvingistheoptimizationofproblemsolvingGausssaid,goforamostbeautifulandconciseproof.Itwasthemainmotivat
35、ionthatattractedmetostudyitSimplicityisanimportantsymbolofmathematicalbeautySimplyreferstothefactthatmanyfactsaresummedupinsimpleformulasEuclidsgeometryoriginallystartedwith36definitionsand19axioms467propositionsareobtainedHavecompletedtheestablishmentofasubjectExactly100yearsagoInnineteenthCentury,
36、Hilbert,thegreatestmathematician,publishedhisepoch-makingessay,mathematicsproblematthesecondinternationalmathematicianCongressinParisThemainpartofthethesisputsforward23mathematicalproblemsthatshouldbestudiedandbrokendowninanewcenturyLessthan500wordsAparagonofbrevityKleinsaid:newwaystosolveoldproblem
37、s.CanpromotethedevelopmentofMathematicsUnconventionalsolutionsareactuallynewwaysofsolvingoldproblemsteachingofunconventionalproblemsolvingTheteachermustfirstpassthroughhimselfTheinnovationandspiritofthemathematicsteacheristhemodelofthestudentsSometeachersplacetoomuchemphasisonthemasteryandmasteryofB
38、ookMethodsNotonlydidnotthinkofunconventionalsolutionsNotevenstudentscanuseitQuiteafewstudentstalkedaboutsomemajorexamsSomeofthesubjectsaredifficultAlthoughsomesolutionshavebeenthoughtoutEvengottherightsolutionButthemethodsusedaredifferentfromthoseinbooksSoIdarenotwriteitoutSomehavebeenwrittenoutButs
39、ometeachersdonotgivepointsmarkingInTeachingSometeachersgivetheirstudentsananalysisoftheproblemanduseunconventionalproblem-solvingmethodsStudentsoftenask,doyougivepointsinthistest?Becausethatsnotwhattheteachingmaterialdoes!SometeacherstalkabouttrigonometricfunctionsTeachstudentstostudythepropertiesof
40、trigonometricfunctionsbyunitcircles(includingtheevaluationoftrigonometricfunctions,solutionsoftrigonometricequations,symbolsoftrigonometricfunctions,periodicity,definitions,domains,ranges,etc.)ButitwascriticizedbyotherteachersThatinterfereswithnormalteachingItisunfavorableforstudentstomastertheknowl
41、edgeoftextbooksDonotconformtotherequirementsofteachingmaterials,etc.ItshardtoimagineAmanwhostickstohisownrulesdoesnotdaretoteachmoreAteacherwhodoesnotdiscussmultiplesolutionsandunconventionalsolutionsAbletoteachcreativestudentsStudentscreativitycomesfromteachersdemonstrationandencouragementThekeytot
42、hedevelopmentofunconventionalproblem-solvingabilityistheteachertheformationofstudentsunconventionalproblem-solvingabilityShouldseeTheroutineisthefoundationIsthepremiseUnconventionalistoimproveAbreakthrough;aconventionisgeneralUnconventionalisparticularityOnlyproficiencyinavarietyofconventionalproblem-solvingmethodsCanbesynthesized,compared,summarizedGetunconventionalproblem-solvingmethodsTheessenceoftheunconventionalsolutionistooptimizetheproblemTheconfirmationoftheoptimizationisestablishedincomparisonThereisonlyonesolutiontoaquestionItdoe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沧州地坪施工方案
- 太阳能器具在户外摇滚乐比赛的供电考核试卷
- 塑料鞋生产安全操作规程考核试卷
- 煤炭矿区土地复垦技术考核试卷
- 建筑装饰与城市照明规划考核试卷
- 2025年速闭消声止回阀项目可行性研究报告
- 2025年超声脱钙机项目可行性研究报告
- 2025年豆面条项目可行性研究报告
- 2025-2030中国自动泊车系统行业发展分析及发展趋势预测报告
- 2025年蓝牙通讯产品项目可行性研究报告
- 隔离与防护措施的正确应用
- 高血压问卷设计(知信行模式)
- 职业病危害告知书
- TRIZ理论――创新方法课件
- CORN术中获得性压力性损伤风险评估量表评定细则解读
- 中国大唐集团公司以热率为核心能耗管理指导意见
- (1.3)-灾害护理学第二章灾害应急体系
- 客户ABC分类管理
- GB/T 12755-2008建筑用压型钢板
- GB 8372-2001牙膏
- GA/T 882-2014讯问同步录音录像系统技术要求
评论
0/150
提交评论