版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1以下四个图形标志中,其中是中心对称图形的是( )ABCD2将一副三角尺(在中,在中,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )AB
2、CD3为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是 A180个,160个B170个,160个C170个,180个D160个,200个4如图,O是ABC的外接圆,C60,则AOB的度数是( )A30B60C120D1505若关于的方程有两个相等的根,则的值为( )A10B10或14C-10或14D10或-146如图,平行四边形ABCD中,ACAB,点E为BC边中点,AD=6,则AE的长为( )A2B3 C4 D 57下列方程有实数根的是ABC+2x1=0D8如果5x=6y,那么下列结论
3、正确的是()ABCD9二次函数图象如图所示,下列结论:;有两个相等的实数根,其中正确的有( )A1个B2个C3个D4个10如图,则下列比例式错误的是( )ABCD二、填空题(每小题3分,共24分)11如图,AD,BC相交于点O,ABCD若AB2,CD3,则ABO与DCO的面积之比为_12如图所示的点阵中,相邻的四个点构成正方形,小球只在矩形内自由滚动时,则小球停留在阴影区域的概率为_.13如图所示,已知:点,在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,则第个等边三角形的周长等于 14如图,在直角坐标系中,已知点,对述续作旋转变换,依次得、
4、,则的直角顶点的坐标为_15把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为_.16写出一个具有性质“在每个象限内y随x的增大而减小”的反比例函数的表达式为_.17如图,在等腰中,点是以为直径的圆与的交点,若,则图中阴影部分的面积为_18如图所示,个边长为1的等边三角形,其中点,在同一条直线上,若记的面积为,的面积为,的面积为,的面积为,则_.三、解答题(共66分)19(10分)定义:已知点是三角形边上的一点(顶点除外),若它到三角形一条边的距离等于它到三角形的一个顶点的距离,则我们把点叫做该三角形的等距点(1)如图1:中,在斜边上
5、,且点是的等距点,试求的长;(2)如图2,中,点在边上,为中点,且求证:的外接圆圆心是的等距点;求的值20(6分)在RtABC中,ACBC,C90,求:(1)cosA;(2)当AB4时,求BC的长.21(6分)解方程:3x(x1)=x122(8分)如图,在平面直角坐标系中,点A、B的坐标分别是(0,3)、(-4,0)(1)将AOB绕点A逆时针旋转90得到AEF,点O、B对应点分别是E、F,请在图中面出AEF;(2)以点O为位似中心,将三角形AEF作位似变换且缩小为原来的在网格内画出一个符合条件的23(8分)已知二次函数y1x2+mx+n的图象经过点P(3,1),对称轴是经过(1,0)且平行于y
6、轴的直线(1)求m,n的值,(2)如图,一次函数y2kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,若点B与点M(4,6)关于抛物线对称轴对称,求一次函数的表达式(3)根据函数图象直接写出y1y2时x的取值范围24(8分)如图,在平面直角坐标系中,已知抛物线与直线都经过、两点,该抛物线的顶点为C(1)求此抛物线和直线的解析式;(2)设直线与该抛物线的对称轴交于点E,在射线上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线下方抛物线上的一动点,当面积最大时,求点P的坐
7、标,并求面积的最大值25(10分)如图,在平面直角坐标系xOy中,ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)按下列要求作图:将ABC向左平移4个单位,得到A1B1C1;将A1B1C1绕点B1逆时针旋转90,得到A1B1C1(1)求点C1在旋转过程中所经过的路径长26(10分)如图,一次函数ykx+b的图象分别交x轴,y轴于A(4.0),B(0,2)两点,与反比例函数y的图象交于CD两点,CEx轴于点E且CE1(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出:不等式0kx+b的解集参考答案一、选择题(每小题3分,共30分)1、C【分析】根据中心对称图形的
8、概念对各选项逐一分析判断即可得答案【详解】A、不是中心对称图形,故本选项不合题意,B、不是中心对称图形,故本选项不合题意,C、是中心对称图形,故本选项符合题意,D、不是中心对称图形,故本选项不合题意故选C【点睛】本题考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合2、C【解析】先根据直角三角形斜边上的中线性质得CD=AD=DB,则ACD=A=30,BCD=B=60,由于EDF=90,可利用互余得CPD=60,再根据旋转的性质得PDM=CDN=,于是可判断PDMCDN,得到=,然后在RtPCD中利用正切的定义得到tanPCD=tan30=,于是可得=【详解】点D为斜
9、边AB的中点,CD=AD=DB,ACD=A=30,BCD=B=60,EDF=90,CPD=60,MPD=NCD,EDF绕点D顺时针方向旋转(060),PDM=CDN=,PDMCDN,=,在RtPCD中,tanPCD=tan30=,=tan30=故选:C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了相似三角形的判定与性质3、B【解析】根据中位数和众数的定义分别进行解答即可【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,
10、则众数是160;故选B【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数4、C【分析】根据圆周角定理即可得到结论【详解】C60,AOB2C120,故选:C【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键5、D【分析】根据题意利用根的判别式,进行分析计算即可得出答案.【详解】解:关于的方程有两个相等的根,即有,解得 10或-14.故选:D.【点睛】本题考查的是根的判别式,熟知一元二次方程中,当时,方程
11、有两个相等的两个实数根是解答此题的关键6、B【解析】由平行四边形得AD=BC,在RtBAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:四边形ABCD是平行四边形,AD=BC=6,ACAB,BAC为RtBAC,点E为BC边中点, AE=BC=.故选B.7、C【解析】Ax40,x4+2=0无解,故本选项不符合题意;B0,=1无解,故本选项不符合题意;Cx2+2x1=0, =80,方程有实数根,故本选项符合题意;D解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意故选C8、A【解析】试题解析:A, 可以得出: 故选A.9、D【分析】根据图象与x轴
12、有两个交点可判定;根据对称轴为可判定;根据开口方向、对称轴和与y轴的交点可判定;根据当时以及对称轴为可判定;利用二次函数与一元二次方程的联系可判定【详解】解:根据图象与x轴有两个交点可得,此结论正确;对称轴为,即,整理可得,此结论正确;抛物线开口向下,故,所以,抛物线与y轴的交点在y轴的正半轴,所以,故,此结论错误;当时,对称轴为,所以当时,即,此结论正确;当时,只对应一个x的值,即有两个相等的实数根,此结论正确;综上所述,正确的有4个,故选:D【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键10、A【分析】由题意根据平行线分线段成比例定理
13、写出相应的比例式,即可得出答案【详解】解:DEBC,A错误;故选:A【点睛】本题考查平行线分线段成比例定理,熟练平行线分线段成比例定理,关键是找准对应关系,避免错选其他答案二、填空题(每小题3分,共24分)11、【分析】由ABCD可得出AD,BC,进而可得出ABODCO,再利用相似三角形的性质可求出ABO与DCO的面积之比【详解】ABCD,AD,BC,ABODCO, 故答案为:【点睛】此题考查相似三角形的判定及性质,相似三角形的面积的比等于相似比的平方.12、【分析】分别求出矩形ABCD的面积和阴影部分的面积即可确定概率.【详解】设每相邻两个点之间的距离为a则矩形ABCD的面积为 而利用梯形的
14、面积公式和图形的对称性可知阴影部分的面积为 小球停留在阴影区域的概率为 故答案为【点睛】本题主要考查随机事件的概率,能够求出阴影部分的面积是解题的关键.13、【解析】OB=,OC=1,BC=2,OBC=30,OCB=60而AA1B1为等边三角形,A1AB1=60,COA1=30,则CA1O=90在RtCAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于第n个等边三角形的周长等于.14、 (1200,0)【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由时直角顶点的坐标可以求出来,从而可以解答本题【详解】由题意
15、可得,OAB旋转三次和原来的相对位置一样,点A(-3,0)、B(0,4),OA=3,OB=4,BOA=90,旋转到第三次时的直角顶点的坐标为:(12,0),3013=1001旋转第301次的直角顶点的坐标为:(1200,0),故答案为:(1200,0)【点睛】本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键15、【分析】根据概率的定义求解即可【详解】一副普通扑克牌中的13张红桃牌,牌上的数字是3的倍数有4张概率为故本题答案为:【点睛】本题考查了随机事件的概率16、y=(答案
16、不唯一)【解析】根据反比例函数的性质,只需要当k0即可,答案不唯一.故答案为y=(答案不唯一).17、【分析】取AB的中点O,连接OD,根据圆周角定理得出,根据阴影部分的面积扇形BOD的面积进行求解【详解】取AB的中点O,连接OD,在等腰中,阴影部分的面积扇形BOD的面积,故答案为:【点睛】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键18、【分析】由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,Bn在一条直线上,可作出直线BB1易求得ABC1的面积,然后由相似三角形的性质,易求得S1的值,同理求得S2的值,继而求得Sn的值【详解】
17、如图连接BB1,B1B2,B2B3;由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1, B2,B3,Bn在一条直线上SABC1=1=BB1AC1, BD1B1 AC1D1,BB1C1为等边三角形则C1D1=BD1=;,C1B1D1中C1D1边上的高也为;S1=;同理可得;则=,S2=;同理可得:;=,Sn=【点睛】此题考查了相似三角形的判定与性质以及等边三角形的性质此题难度较大,属于规律性题目,注意辅助线的作法,注意数形结合思想的应用三、解答题(共66分)19、(1)或 ; (2)证明见解析, 【分析】(1)根据三角形的等距点的定义得出OB=OE或OA=OF,利用相似三角形,表达
18、出对应边,列出方程求解即可;(2)由CPD为直角三角形,作出外接圆,通过平行线分线段成比例得出DPOB,进而证明CBOPBO,最后推出OP为点O到AB的距离,从而证明点O是ABC的等距点;(2)求相当于求,由可得APO为直角三角,通过勾股定理计算出BC的长度,从而求出【详解】解:(1)如图所示,作OFBC于点F,作OEAC于点E,则OBFABC,由勾股定理可得AB=5,设OB=x,则,点是的等距点,若OB=OE,解得:若OA=OF,OA=5-x,解得故OB的值为或 (2) 证明:CDP是直角三角形,所以取CD中点O,作出CDP的外接圆,连接OP,OB设圆O的半径为r,则DC=2r,D是AC中点
19、,OA=3r,又PA=2PB,AB=3PBODP=COB,OPD=POB又ODP=OPD,COB=POB,在CBO与PBO中, ,CBOPBO(SAS)OCB=OPB=90,OPAB,即OP为点O到AB的距离,又OP=OC,CPD的外接圆圆心O是ABC的等距点由可知,OPA为直角三角形,且PDC=BOC,OC=OP=r在RtOPA中,OA=3r,,在RtABC中,AC=4r,【点睛】本题考查了几何中的新定义问题,涉及了相似三角形的判定和性质,直角三角形的性质,圆的性质及三角函数的内容,范围较大,综合性较强,解题的关键是明确题中的新定义,并灵活根据几何知识作出解答20、(1);(2)【解析】(1
20、)根据等腰直角三角形的判定得到ABC为等腰直角三角形,则A=45,然后利用特殊角的三角函数值求解即可;(2)根据A的正弦求解即可.【详解】ACBC,C90,A=B=45,cosA=cos45= ,BC=AB=2,【点睛】本题考查解直角三角形及等腰直角三角形的判定,熟练掌握特殊角三角函数值是解题关键.21、x1=1或x1=【解析】移项后提取公因式x1后利用因式分解法求得一元二次方程的解即可【详解】解:3x(x1)=x1,移项得:3x(x1)(x1)=0整理得:(x1)(3x1)=0 x1=0或3x1=0解得:x1=1或x1=.【点睛】本题考查了因式分解法解一元二次方程,解题的关键是先移项,然后提
21、取公因式,防止两边同除以x1,这样会漏根22、(1)图详见解析,E(3,3),F(3,1);(2)详见解析【分析】(1)利用网格的特点和旋转的性质,画出点O,B对应点E,F,再顺次连接可得到,然后写出E、F的坐标即可;(2)先连接OE、OF,然后分别取OA、OE、OF的三等分点可得点,再顺次连接可得到【详解】(1)利用网格的特点和旋转的性质,画出点O,B对应点E,F,再顺次连接可得到,如图即为所求,点E、F的坐标为;(2)先连接OE、OF,然后分别取OA、OE、OF的三等分点可得点,再顺次连接可得到,如图即为所求【点睛】本题考查了图形的旋转、位似中心图形的画法,掌握理解旋转的定义和位似中心的定
22、义是解题关键23、(1)1,;(1)yx+4;(3)x3或x1.【分析】(1)将点P(-3,1)代入二次函数解析式得出3mn8,然后根据对称轴过点(-1,0)得出对称轴为x=-1,据此求出m的值,然后进一步求出n的值即可;(1)根据一次函数经过点P(3,1),得出13k+b,且点B与点M(4,6)关于x1对称,所以B(1,6),所以61k+b,最后求出k与b的值即可;(3)y1y1,则说明 y1的函数图像在y1函数图像上方,据此根据图像直接写出范围即可.【详解】(1)由二次函数经过点P(3,1),193m+n,3mn8,又对称轴是经过(1,0)且平行于y轴的直线,对称轴为x1,1,m1,n1;
23、(1)一次函数经过点P(3,1),13k+b,点B与点M(4,6)关于x1对称,B(1,6),61k+b,k1,b4,一次函数解析式为yx+4;(3)由图象可知,x3或x1时,y1y1【点睛】本题主要考查了二次函数的综合运用,熟练掌握相关概念是解题关键.24、(1)抛物线的解析式为,直线的解析式为,(2)或(3)当时,面积的最大值是,此时P点坐标为【解析】(1)将、两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则,分两种情况讨论:若点M在x轴下方,四边形为平行四边形,则,若点M在x轴上方,四边形为平行四边形,则,设,则,可分别得到方程求出点M的坐标;(3)如图,作轴交直线于点G,设,则,可由,得到m的表达式,利用二次函数求最值问题配方即可【详解】解:(1)抛物线经过、两点,抛物线的解析式为,直线经过、两点,解得:,直线的解析式为,(2),抛物线的顶点C的坐标为,轴,如图,若点M在x轴下方,四边形为平行四边形,则,设,则,解得:,(舍去),如图,若点M在x轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论