5.3 平行线的性质(2)-_第1页
5.3 平行线的性质(2)-_第2页
5.3 平行线的性质(2)-_第3页
5.3 平行线的性质(2)-_第4页
5.3 平行线的性质(2)-_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、7/75 平行线的性质()(第8课时) 三维目标 一、知识与技能 .平行线的判定和性质的综合应用; 2.掌握两条平行线的距离的概念 二、过程与方法 经历平行线的判定和性质的综合应用,丰富对现实空间及图形的认识,培养识图能力; 2经历探究平行线间的距离过程,培养用数学的意识. 三、情感态度与价值观 通过用平行线的判定和性质解决问题,提高学生学习数学的积极性,并在活动中获得成功的体验. 教学重点 1。掌握平行线性质在实际问题中的应用; 2。理解平行线间的距离的概念. 教学难点 1.平行线性质在实际问题中的应用; 2平行线间的距离概念 教具准备 多媒体课件、三角尺、直尺等. 教学过程 一、创设问题情

2、境,导入新课 活动1 问题:(1)如图,有一座山,想在山中开凿一条隧道直通甲、乙两地,在甲地一侧的隧道方向为北偏东41.5,如果甲、乙两地同时开工,那么乙地隧道按怎样的角度施工,才能使隧道在山里准确开通。 (2)练习:如图,直线a,1=5,那么2、3、4各是多少度? 设计意图: 本活动的两个问题都是平行线性质的应用,问题(1)是通过两直线平行,内错角相等的知识来解决;问题(2)的解决,需要用“对顶角相等”“两直线平行,同旁内角互补“两直线平行,同位角相等”提高学生解决实际问题的能力。 师生行为: 先由学生独立思考,然后在小组内讨论、交流;教师注意引导学生将实际问题转化为数学问题 本次活动教师应

3、关注: (1)学生对平行线性质的运用能力; (2)把实际问题转化为数学问题的能力; ()小组交流、合作的意识; (4)学生在学习过程中体现的情感态度与价值观 生:问题(1)的解答如下: 解:因为两直线平行,内错角相等,所以乙地可以按南偏西5方向施工,或按北偏西3.5方向施工. 生:问题(2) 解:因为1=(对顶角相等), 又1=5,所以2=54 又因为b, 所以2=54(两直线平行,内错角相等)。 3=80=185416(两直线平行,同旁内角互补) 二、讲授新课 活动 问题:()如图,是一块梯形铁片的残余部分,量10,115,梯形的另外两个角分别是多少度?(2)如图,ABCD,=45,D=C,

4、依次求D,C,的度数.(3)如图,已知ABCD,B=0,BED=100,求D的度数 设计意图: 本活动进一步从实际问题出发掌握平行线性质的应用通过活动使学生意识到学数学的真正用途在于应用,提高学生学数学的兴趣和信心为学生创设一个充分展现和调动积极性的机会 师生行为: 学生独立完成后在小组内交流;教师对学生的解答过程给予评价 本活动中教师需重点关注: (1)学生会用平行线的性质计算出所求角的度数; ()学生能否从数学的角度去将实际问题转化成数学问题; (3)学生能否在活动中体验到成功。 生:问题(1) 解:如图,因为梯形上、下两底互相平行,所以与D互补,B与C互补 于是 180A1801080,

5、 C=80B=80=5 所以梯形的另外两个角分别是80、65。 生:问题(2) 解:如图,因为BCD,所以D=a=4, 又D=C,所以C=45。 又因为ABD,所以B+C=10. 所以=18045=3。 生:问题(3) 解:如图,过E作FAB(一般画虚线), 因为ABD(已知), 所以EFC(平行于同一直线的两直线平行). 所以1B,=(两直线平行,内错角相等) 因为1+=BED0(已知), 所以B+D=00(等量代换) 所以D=100B=100-06 说明:本题中已有ABD的条件,但B、并不是它的截线,不是“三线八角”的基本图形,因此添加辅助线构成“三线八角” 三、两条平行线间的距离 活动3

6、 探究:用三角尺和直尺画平行线,做成一张5个格子的方格纸观察做出的方格纸的一部分(如图),线段B1C1,B2C2,B5C5都与两条平行的横线1B5和 设计意图: 通过动手操作在方格纸上探究两条平行线间的距离的概念,了解其合理性 通过此活动,为学生提供动手操作的机会 师生行为: 学生亲自动手操作,理解平行线间的距离的概念. 教师在这次活动中需重点关注: (1)通过测量发现B1C,B2C2,BC5都与平行的横线A1、 (2)通过测量发现1C,B2C2,B5 (3)注意学生动手操作的技能。 生:可以发现线段B1C1,B2C2,,BC同时垂直于两条平行的直线AB5和A 师:像这样,同时垂直于两条平行线

7、,并且夹在这两条平行线间的线段长度,叫做这两条平行线的距离 活动4 思考:如图,如果ABCD,在上任取一点E,向A作垂线段EF,这时,是否也垂直于直线CD呢?我们这样作出的垂线段EF的长度d是平行线AB、CD的距离吗? 设计意图: 通过此活动,让学生加深对平行线间的距离的概念的理解 师生行为: 学生独立思考,组内交流;教师引导学生对此问题的理解。 教师在这次活动中,应重点关注: (1)学生利用概念解释数学问题的能力; (2)学生数学语言的表达能力; (3)学生思维的灵活性; (4)学生在解决问题的过程中所体现的情感态度与价值观 生:根据“两直线平行,同旁内角互补”,可以发现FD.根据平行线间的

8、距离的定义,由于F是夹在两条平行直线之间,并且和它们垂直的线段,所以垂线段E的长度d就是平行线A、的距离. 师:再找一个在D上不同于E点的一个点,作A,垂足为N,可知N=E不妨多找几个这样的点,你能得出什么结论? 生:平行线间的距离处处相等 生:你还能得出什么结论? 生:垂直于两条平行线中的一条直线,必垂直于另一条直线 四、课时小结 1.谈谈本节课你有哪些收获; 2.掌握平行线的判定与性质及其应用 3理解两平行线间的距离 板书设计 53 平行线的性质(二)1利用平行线的性质解决生活中的问题 活动与探究如图,一个宽度相等的纸条,如图折叠一下,那么1等于多少度?过程从折叠的过程不难发现折叠过来的部

9、分和原来的部分是完全重合的,所以1=2,根据平行线的性质,可知1+=120 结果1=6。 备课资料平行线创新题例说 在学习了平行线的判定和性质后,还要会解决一些有关的创新题,举例证明如下: 一、条件开放题 即要得到某一结论,但还缺少条件,要求补充完整,往往所补充的条件不唯一的题.如图,已知:ABB于B,DF于D,要使AB,还需补充什么条件?请你填上所需条件解析:要使ABCD,只要使1=,因BE于B,从而1=9,故只需2=0;考虑到DF于D,故=90,从而2=即可;又由=3可知BED. 故可在3,或BEDF中任选一个条件即可 二、结论开放题 即满足条件的结论未给出,且结论不唯一如图,已知D,BF

10、分别平分AD和BC,F=AED,ADC=BC,由此可得到图中哪些线段平行?并说明理由. 解析:DBF,DAB,AC 由AD=AF易得DE, 由已知可证D=BF=ABC=AC=EDC,故CDAB;由CAB易得C+BC=180,又因为ABC=DC,所以C+ADC=18,故DBC。 三、条件、结论双开放题 即条件和结论都不唯一的题. 【例3】已知:如图,BC交DE于,给出下面三个论断:B=E;ABE;BCE.请以其中的两个论断为条件,填入“已知”栏中,以另一个论断为结论,填入“求证”栏中,使之成为一个真命题,并证明之. 已知:如图,BC交DE于O,_. 求证:_证明:_ 分析:由于三个论断可组成、三种情形的真命题,选择其中任一个即可 如:。 已知:如图,BC交DE于O,B=,AE 求证:BCEF 证明:因为BDE,所以=OD, 又BE,所以E=COD所以B。 其余两种情形由同学们完成 四、探索题 即根据题意探索结论或条件的题.如图,已知1=2,BD平分B,可得到哪两条直线平行?如果要得到另外两条直线平行,则应将上述两个条件之一作如何改变? 分析:由D平分ABC知DC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论