


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题-相似三角形的常见模型(一)教学目标学生会运用两组对应角分别相等的两个三角形为相似三角形的判定方法证明两个三角形相似。学生经过回顾、观察、比较、证明、归纳的学习过程,理解“一线三等角”图形的含义和特征,并且能够结合其他图形识别并构造“一线三等角”模型。学生在学习过程中感受基本模型的重要性。教学重点、难点重点:运用相似三角形的判定方法解决“一线三等角”的相关计算和证明。难点:在不同的背景中识别并且构造“一线三等角”模型。教学方法:教师引导学生探究思考证明并使用知识。教学过程回顾两种常见模型“A”字型 DE/BC 思考: 在Rt ABC中,点P是直角边AB上的一点,且不与点A、B重合,过点P作
2、直线截 ABC,使截得的三角形与Rt ABC相似,你可以怎么作?思考: 在Rt ABC中,点P是直角边AB上的一点,且不与点A、B重合,过点P作直线截 ABC,使截得的三角形与Rt ABC相似,你可以怎么作?“8”字型“8”字型 DE/BC 2、总结“一线三等角”模型2、总结“一线三等角”模型注: ( )( )注: ( )( )( )应用一:与等腰三角形(包括等边三角形)的结合应用一:与等腰三角形(包括等边三角形)的结合例1:如图,等边三角形ABC的边长为5,点E为BC边上的一点,且BE=2,点D为AC边上一点,若 AED= ,求CD的长.例2:如图,在平面直角坐标系中,矩形OABC,点B的坐
3、标为(1,2),例2:如图,在平面直角坐标系中,矩形OABC,点B的坐标为(1,2), OAB沿直线OB翻折,点A落在点D处,求点D的坐标 . 应用二:与矩形的结合例:如图,矩形ABCD的一边AD沿AE折叠,使点D落在BC边上的点F处,已知CE=3cm,CF=4cm,则矩形ABCD的周长为 应用二:与矩形的结合例:如图,矩形ABCD的一边AD沿AE折叠,使点D落在BC边上的点F处,已知CE=3cm,CF=4cm,则矩形ABCD的周长为 cm.3、“一线三等角”模型的应用应用三:巧求点的坐标例1:如图,在平面直角坐标系中,矩形ABCD的AB:BC=3:2,点A(3,0)、B(0,6)分别在x轴、
4、y轴上,则点D 的坐标为 . 2023年奉贤模拟25题: 如图,点P在线段AB上,连接PD,过点D作PD的垂线,与BC相交于点C.设线段AP的长为x.(1)当AP=AD时,求线段PC的长;(2)设 PDC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当 APD DPC时,求线段BC的长.5、课后思考4、课堂总结例2:如图,在等腰Rt ABC和等腰Rt ADE中,BAC= DAE= ,且点D在BC上,DE与AC相交于点F.应用三:巧求点的坐标例1:如图,在平面直角坐标系中,矩形ABCD的AB:BC=3:2,点A(3,0)、B(0,6)分别在x轴、y轴上,则点D 的坐标为 . 2023年奉贤模拟25题: 如图,点P在线段AB上,连接PD,过点D作PD的垂线,与BC相交于点C.设线段AP的长为x.(1)当AP=AD时,求线段PC的长;(2)设 PDC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当 APD DPC时,求线段BC的长.5、课后思考4、课堂总结例2:如图,在等腰Rt ABC和等腰R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年计算机二级MySQL重点复习试题及答案
- 税法考试真相试题及答案
- 计算机二级Web考试边练习边总结试题及答案
- 2025年MySQL性能监控必须知道的试题与答案
- 2025年计算机二级Python考试考后总结与反思及试题及答案
- 财务成本分配方法的试题及答案
- 软考TCPIP协议细节试题及答案
- 计算机二级Web在线教育平台开发试题及答案
- Msoffice学习思维导图试题及答案
- 高中生物必修三综合题与答案
- GB/T 2423.22-2012环境试验第2部分:试验方法试验N:温度变化
- GB 16869-2005鲜、冻禽产品
- 2023年云南省普通高中学业水平考试历史试卷附答案
- 11471劳动争议处理(第6章)
- 《新民主主义论》-课件
- 高速公路横断面设计
- 教资面试 阅读课 全日语逐字稿 讲义
- 除四害消杀记录表
- 【课件】场域与对话-公共空间里的雕塑 课件-2022-2023学年高中美术人美版(2019)美术鉴赏
- 钢筋网检验批质量验收记录表
- 国家通用手语日常会话:手指语课件
评论
0/150
提交评论