下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、天津江陵中学2022年高三数学理下学期期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的图像大致是( )参考答案:D略2. 已知抛物线的焦点F,过点F作斜率为1的直线与抛物线C交于M,N两点,线段MN的垂直平分线与x轴交于点P,若,则|MN|=( )A. 10B. 12C. 14D. 16参考答案:B【分析】利用抛物线的弦长公式得,再利用,求出点,进而利用点差法可得关于的方程,解方程即可得到答案.【详解】由题意得直线的倾斜角为45,设直线与直线的交点为,则为等腰直角三角形,设,.故选:B.【点睛】本题考查直线与抛物
2、线的位置关系、点差法的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.3. 、已知=m,则 ( )A HYPERLINK / 2m BC D 参考答案:C4. 设双曲线的一个焦点为,虚轴的一个端点为,线段与双曲线的一条渐近线交于点,若,则双曲线的离心率为( )A. 6 B. 4 C. 3 D. 2参考答案:D试题分析:设点,由,得,即,所以点因为点在渐近线上,则,即,选D考点:1、向量的运算;2、离心率的求法5. 若集合M=x|0 x1,N=x|y=lg,则M?RN=( )A0B0,1Cx|0 x1Dx|x0或x1参考答案:B考点:交、并、补集的混合运算 专题:集合分
3、析:出M的解集,求出N的补集,根据交集的定义求出即可解答:解:集合N=x|y=lg=x|x(1x)0=(0,1),又M=x|0 x1,(CRN)=(,01,+),M?RN=0,1,故选:B点评:本题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键6. 已知命题p1:存在x0R,使得x02+x0+10成立;p2:对任意的x1,2,x210以下命题为真命题的是( )Ap1p2Bp1p2Cp1p2Dp1p2参考答案:C【考点】复合命题的真假 【专题】简易逻辑【分析】根据一元二次不等式解的情况和判别式的关系,以及一元二次不等式解的情况,即可判断命题p1,p2的真假,根据pq,pq,p的真
4、假和p,q真假的关系即可找出真命题的选项解:对于不等式,判别式=140,所以该不等式无解;命题p1是假命题;函数f(x)=x21在1,2上单调递增,对于任意x1,2,f(x)f(1)=0,即x210;命题p2是真命题;p1是真命题,p2是假命题;p1p2是假命题,p1p2为假命题,p1p2为真命题,p1p2为假命题故选C【点评】考查一元二次不等式解的情况和判别式的关系,以及根据二次函数的单调性求函数值的范围7. 在约束条件下,当时,目标函数的最大值的变化范围是 ( ) A.6,15 B.7,15 C.6,8 D.7,8参考答案:D略8. 复数在复平面上对应的点的坐标是( ) A B C D参考
5、答案:D9. 张丘建算经卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A18B20C21D25参考答案:C【考点】88:等比数列的通项公式【分析】设出等差数列的公差,由题意列式求得公差,再由等差数列的通项公式求解【解答】解:设公差为d,由题意可得:前30项和S30=390=305+d,解得d=最后一天织的布的尺数等于5+29d=5+29=21故选:C10. 已知集合,若,则(). . . .参考答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 若,则的值
6、是 。参考答案:212. 设数列an的前n项和为Sn,且. 请写出一个满足条件的数列an的通项公式an =_参考答案:(答案不唯一)【分析】首先由题意确定数列的特征,然后结合数列的特征给出满足题意的数列的通项公式即可.【详解】,则数列是递增的,即最小,只要前6项均为负数,或前5项为负数,第6项为0,即可,所以,满足条件的数列的一个通项公式(答案不唯一)【点睛】本题主要考查数列前n项和的性质,数列的通项公式的确定等知识,意在考查学生的转化能力和计算求解能力.13. 若关于x的方程有且仅有3个不同实数解,则实数a的取值范围是 参考答案:或原方程可转化为,令, 当方程有且只有一个根时,或,发现符合题
7、意,当方程有且只有两个根时,此时或,且两根(0,e),(,0),此时,解得,综上实数的取值范围是或14. (2|1x|)dx= 参考答案:3【考点】定积分【分析】将(0,2)区间分为(0,1)和(1,2),分别化简2|1x|,转化成=01(1+x)dx+12(3x)dx,求解即可【解答】解: =01(1+x)dx+12(3x)dx=(x+x2)|01+(3x)|12=(1+0)+(623+)=3故答案为:315. (2017?白山二模)函数的定义域是(用区间表示)参考答案:(1,3)(3,+)【考点】函数的定义域及其求法【分析】由对数式的真数大于0,分式的分母不等于0联立不等式组求解x的取值集
8、合【解答】解:要使原函数有意义,则,解得:x1,且x3函数的定义域是(1,3)(3,+)故答案为:(1,3)(3,+)【点评】本题考查了函数的定义域及其求法,是基础的计算题16. 已知直线的方程为,点与点关于直线对称,则点的坐标为 参考答案:17. 某程序框图如图所示,该程序运行后输出的的值是 参考答案:4三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 已知曲线C的极坐标方程是=4cos以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A
9、、B两点,且|AB|=,求直线的倾斜角的值参考答案:【考点】参数方程化成普通方程【分析】本题(1)可以利用极坐标与直角坐标 互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1t2|,得到的三角方程,解方程得到的值,要注意角范围【解答】解:(1)cos=x,sin=y,2=x2+y2,曲线C的极坐标方程是=4cos可化为:2=4cos,x2+y2=4x,(x2)2+y2=4(2)将代入圆的方程(x2)2+y2=4得:(t
10、cos1)2+(tsin)2=4,化简得t22tcos3=0设A、B两点对应的参数分别为t1、t2,则,|AB|=|t1t2|=,|AB|=,=cos0,),或直线的倾斜角或19. (本小题满分12分)已知函数的图象与y轴的交点为,它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(I)求的解析式及的值;(II)若锐角满足的值.参考答案:20. 已知函数f(x)=lnx+x2ax(a为常数)(1)若x=1是函数f(x)的一个极值点,求a的值;(2)当0a2时,试判断f(x)的单调性;(3)若对任意的a(1,2),x01,2,使不等式f(x0)mlna恒成立,求实数m的取值范围参考答案:【考点
11、】利用导数研究函数的极值;利用导数研究函数的单调性【分析】(1)求导数,利用极值的 定义,即可求a的值;(2)当0a2时,判断导数的符号,即可判断f(x)的单调性;(3)问题等价于:对任意的a(1,2),不等式1amlna恒成立即恒成立【解答】解:(1)由已知得:f(1)=0,1+2a=0,a=3(2)当0a2时,f(x)=因为0a2,所以,而x0,即,故f(x)在(0,+)上是增函数(3)当a(1,2)时,由(2)知,f(x)在1,2上的最小值为f(1)=1a,故问题等价于:对任意的a(1,2),不等式1amlna恒成立即恒成立记,(1a2),则,令M(a)=alna1+a,则M(a)=ln
12、a0所以M(a),所以M(a)M(1)=0故g(a)0,所以在a(1,2)上单调递减,所以即实数m的取值范围为(,log2e21. 在北上广深等十余大中城市,一款叫“一度用车”的共享汽车给市民们提供了一种新型的出行方式.2020年,怀化也将出现共享汽车,用户每次租车时按行驶里程(1元/公里)加用车时间(0.1元/分钟)收费,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:时间(分钟)15,25)25,35)35,45)45,55)55,65次数814882以各时间段发生的频率视
13、为概率,假设每次路上开车花费的时间视为用车时间,范围为 15,65分钟.()若李先生上、下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望;()若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).参考答案:解:()李先生一次租用共享汽车,为最优选择的概率依题意的值可能为0,1,2,3,4,且B(4,), , , 的分布列为:01234P(或)()每次用车路上平均花的时间(分钟)每次租车的费用约为10+35.50.1=13.55元一个月的平均用车费用约为542元22. 在等比数列an中,已知a4=8a1,且a1,a2+1,a3成等差数列(I)求数列an的通项公式;()求数列|an4|的前n项和Sn参考答案:【考点】8E:数列的求和;8H:数列递推式【分析】(I)设等比数列an的公比为q,a4=8a1,可得=8a1,解得q又a1,a2+1,a3成等差数列,可得2(a2+1)=a1+a3,当然解得a1,利用等比数列的通项公式即可得出(II)n=1时,a14=20,可得S1=2当n2时,an40数列|an4|的前n项和Sn=2+(a24)+(a34)+(an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《财政基本理论》课件
- 猫抓病病因介绍
- 《健康素养知识》课件
- (麦当劳餐饮运营管理资料)麦当劳的公关营销
- (高考英语作文炼句)第28篇译文老师笔记
- 开题报告:志愿服务经历对医学生基层就业效能感的影响实证研究
- 开题报告:云南老旭甸化石村高质量地理研学数字教材建设研究
- 合肥污水处理厂施工组织设计1
- 《说说我的家乡厦门》课件
- 开题报告:新时代中小学生劳动素养发展状况评估与提升路径研究
- 2024房屋转让合同协议书
- 个人项目投资合作协议范本
- 弘扬教育家精神让教育家精神成为广大教师的自觉追求课件
- 蓝天救援队培训
- 国开(北京)2024年秋《财务案例分析》形考作业答案
- 公路水运工程施工企业安全生产管理人员考试题库及答案(600题)
- 12《低碳生活每一天》(说课稿)2023-2024学年统编版道德与法治四年级上册
- 超声透药治疗仪
- 《论文写作培训》课件
- 2024年戏曲剧本创作协议
- GB/T 18724-2024印刷技术印刷品与印刷油墨耐各种试剂性的测定
评论
0/150
提交评论