2023学年浙江省绍兴市上虞区城南中学数学九上期末复习检测模拟试题含解析_第1页
2023学年浙江省绍兴市上虞区城南中学数学九上期末复习检测模拟试题含解析_第2页
2023学年浙江省绍兴市上虞区城南中学数学九上期末复习检测模拟试题含解析_第3页
2023学年浙江省绍兴市上虞区城南中学数学九上期末复习检测模拟试题含解析_第4页
2023学年浙江省绍兴市上虞区城南中学数学九上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1下列说法错误的是( )A将数用科学记数法表示为B的平方根为C无

2、限小数是无理数D比更大,比更小2在下列几何体中,主视图、左视图和俯视图形状都相同的是( )ABCD3如图,AD是O的直径,以A为圆心,弦AB为半径画弧交O于点C,连结BC交AD于点E,若DE3,BC8,则O的半径长为( )AB5CD4下列说法错误的是()A必然事件发生的概率是1B通过大量重复试验,可以用频率估计概率C概率很小的事件不可能发生D投一枚图钉,“钉尖朝上”的概率不能用列举法求得5如图,ABC中A=60,AB=4,AC=6,将ABC沿图示中的虚线剪开,剪下的三角形与ABC不相似的是( )ABCD6如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是( )ABCD7下列四个银

3、行标志中,既是中心对称图形,又是轴对称图形的是( )ABCD8如图,已知按照以下步骤作图:以点为圆心,以适当的长为半径作弧,分别交的两边于,两点,连接分别以点,为圆心,以大于线段的长为半径作弧,两弧在内交于点,连接,连接交于点下列结论中错误的是()ABCD9国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.永州市2016年底大约有贫困人口13万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得( )ABCD10把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A:1B4:1C3:1D

4、2:111下列函数中,函数值随自变量x的值增大而增大的是( )ABCD12下列命题中,直径是圆中最长的弦;长度相等的两条弧是等弧;半径相等的两个圆是等圆;半径不是弧,半圆包括它所对的直径,其中正确的个数是( )ABCD二、填空题(每题4分,共24分)13如图所示的网格是正方形网格,和的顶点都是网格线交点,那么_14如图是一个正方形及其内切圆,正方形的边长为4,随机地往正方形内投一粒米,落在圆内的概率是_15一元二次方程的解是_16某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO8米,母线AB10米,则该圆锥的侧面积是_平方米(结果保留)17若关于的一元二次方程x2+2x-k=0没有实数根,

5、则k的取值范围是_18如图,一抛物线与轴相交于,两点,其顶点在折线段上移动,已知点,的坐标分别为,若点横坐标的最小值为0,则点横坐标的最大值为_.三、解答题(共78分)19(8分)已知:如图,在四边形中,垂足为,过点作,交的延长线于点.(1)求证:四边形是平行四边形(2)若,求的长20(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元(1)设x天后每千克苹果的价格为p元,写出p与x的函数关系式;(2)若存放x天后将苹果一次性售出,设销售总金

6、额为y元,求出y与x的函数关系式;(3)该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?21(8分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶5次,成绩统计如下表:(1)甲、乙的平均成绩分别是多少?(2)甲、乙这5次比赛的成绩的方差分别是多少?(3)如果规定成绩较稳定者胜出,你认为谁应该胜出?说明你的理由;(4)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?22(10分)如图,AB是的直径,点C、D在上,且AD平分,过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F,G为

7、AB的下半圆弧的中点,DG交AB于H,连接DB、GB证明EF是的切线;求证:;已知圆的半径,求GH的长23(10分)在平面直角坐标系中,抛物线yx24x+n(x0)的图象记为G1,将G1绕坐标原点旋转180得到图象G2,图象G1和G2合起来记为图象G(1)若点P(1,2)在图象G上,求n的值(2)当n1时若Q(t,1)在图象G上,求t的值当kx3(k3)时,图象G对应函数的最大值为5,最小值为5,直接写出k的取值范围(3)当以A(3,3)、B(3,1)、C(2,1)、D(2,3)为顶点的矩形ABCD的边与图象G有且只有三个公共点时,直接写出n的取值范围24(10分)(x2+y25(12分)如图

8、,ABC中,BAC=120o,以BC为边向外作等边BCD,把ABD绕着D点按顺时针方向旋转60o后到ECD的位置若AB=6,AC=4,求BAD的度数和AD的长. 26先化简,后求值:,其中参考答案一、选择题(每题4分,共48分)1、C【分析】根据科学记数法的表示方法、平方根的定义、无理数的定义及实数比较大小的方法,进行逐项判断即可【详解】A.65800000=6.58107,故本选项正确;B.9的平方根为:,故本选项正确;C.无限不循环小数是无理数,而无限小数包含无限循环小数和无限不循环小数,故本选项错误;D.,因为,所以,即,故本选项正确故选:C【点睛】本题考查科学记数法、平方根、无理数的概

9、念及实数比较大小,明确各定义和方法即可,难度不大2、C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依次找到主视图、左视图和俯视图形状都相同的图形即可【详解】解:A、圆台的主视图和左视图相同,都是梯形,俯视图是圆环,故选项不符合题意;B、三棱柱的主视图和左视图、俯视图都不相同,故选项不符合题意;C、球的三视图都是大小相同的圆,故选项符合题意D、圆锥的三视图分别为等腰三角形,等腰三角形,含圆心的圆,故选项不符合题意;故选C.【点睛】本题考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体3、A【分析】由作法得,根据圆周角定理得到ADBABE,再根据垂径定

10、理的推论得到ADBC,BECEBC4,于是可判断RtABERtBDE,然后利用相似比求出AE,从而得到圆的直径和半径【详解】解:由作法得ACAB,ADBABE,AB为直径,ADBC,BECEBC4,BEABED90,而BDEABE,RtABERtBDE,BE:DEAE:BE,即4:3AE:4,AE,ADAE+DE+3,O的半径长为故选:A【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系也考查了圆周角定理4、C

11、【解析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【详解】A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C【点睛】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0p1,其中必然发生的事件的概率P(A)1;不可能发生事件的概率P(A)0;随机事件,发生的概率大于0并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.5、A【分析】根据相似三角形的判定

12、定理对各选项进行逐一判定即可【详解】A、两三角形的对应边不成比例,故两三角形不相似,故本选项符合题意,B、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意,C、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,D、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,故选:A.【点睛】本题考查的是相似三角形的判定,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟知相

13、似三角形的判定定理是解答此题的关键6、A【分析】利用勾股定理,求出四个图形中阴影三角形的边长,然后判断哪两个三角形的三边成比例即可.【详解】解:由图,根据勾股定理,可得出图中阴影三角形的边长分别为:;图中阴影三角形的边长分别为:;图中阴影三角形的边长分别为:;图中阴影三角形的边长分别为:;可以得出两个阴影三角形的边长,所以图两个阴影三角形相似;故答案为:A.【点睛】本题考查相似三角形的判定,即如果两个三角形三条边对应成比例,则这两个三角形相似;本题在做题过程中还需注意,阴影三角形的边长利用勾股定理计算,有的图形需要把小正方形补全后计算比较准确.7、C【分析】根据轴对称图形和中心对称图形的概念逐

14、一进行判断即可得.【详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180后,能与原图形重合,那么就说这个图形是中心对称图形.8、C【分析】利用基本作图得出是角平分线的作图,进而解答即可【详解】由作图步骤可得:是的角平分线,COE=DOE,OC=OD,OE=OE

15、,OM=OM,COEDOE,CEO=DEO,COE=DOE,OC=OD,CM=DM,OMCD,S四边形OCED=SCOE+SDOE=,但不能得出,A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C【点睛】本题考查了作图基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.9、B【分析】根据等量关系:2016年贫困人口(1-下降率=2018年贫困人口,把相关数值代入即可【详解】设这两年全省贫困人口的年平均下降率为,根据题意得:

16、,故选:B【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键10、A【分析】设原矩形的长为2a,宽为b,对折后所得的矩形与原矩形相似,则【详解】设原矩形的长为2a,宽为b,则对折后的矩形的长为b,宽为a,对折后所得的矩形与原矩形相似,大矩形与小矩形的相似比是:1;故选A【点睛】理解好:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比.11、A【解析】一次函数当时,函数值总是随自变量的增大而增大,反比例函数当时,在每一个象限内,随自变量增大而增大.【详解】、该函数图象是直线,位于第一、三象

17、限,随增大而增大,故本选项正确;、该函数图象是直线,位于第二、四象限,随增大而减小,故本选项错误;、该函数图象是双曲线,位于第一、三象限,在每一象限内,随增大而减小,故本选项错误;、该函数图象是双曲线,位于第二、四象限,在每一象限内,随增大而增大,故本选项错误.故选:.【点睛】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.12、C【分析】根据弦、弧、等弧的定义即可求解【详解】解:直径是圆中最长的弦,真命题;在等圆或同圆中,长度相等的两条弧是等弧,假命题;半径相等的两个圆是等圆,真命题;半径是圆心与圆上一点之间的线段,不是弧,半圆包括它所对的直径,真命题故选:

18、C【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)二、填空题(每题4分,共24分)13、45【分析】先利用平行线的性质得出,然后通过勾股定理的逆定理得出为等腰直角三角形,从而可得出答案.【详解】如图,连接AD, 故答案为45【点睛】本题主要考查平行线的性质及勾股定理的逆定理,掌握勾股定理的逆定理及平行线的性质是解题的关键.14、【分析】根据题意算出正方形的面积和内切圆面积,再利用几何概率公式加以计算,即可得到所求概率【详解】解:正方形的边长为4,正方形的面积S正方形=16,内切圆的半径r=2,因此,内切圆的面积为S内切圆=r2=4, 可得米落

19、入圆内的概率为: 故答案为:【点睛】本题考查几何概率、正多边形和圆,解答本题的关键是明确题意,属于中档题15、x11,x21【分析】先移项,在两边开方即可得出答案【详解】=9,x=1,即x11,x21,故答案为x11,x21【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.16、【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法Slr,求得答案即可【详解】解:AO8米,AB10米,OB6米,圆锥的底面周长2612米,S扇形lr121060米2,故答案为60【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法Slr是解题的关键

20、17、k-1.【分析】若关于x的一元二次方程x2+2x-k=0没有实数根,则=b2-4ac0,列出关于k的不等式,求得k的取值范围即可【详解】关于x的一元二次方程x2+2x-k=0没有实数根,=b2-4ac0,即22-41(-k)0,解这个不等式得:k-1故答案为:k-118、7【分析】当点横坐标的最小值为0时,抛物线顶点在C点,据此可求出抛物线的a值,再根据点横坐标的最大值时,顶点在E点,求出此时的抛物线即可求解.【详解】当点横坐标的最小值为0时,抛物线顶点在C点,设该抛物线的解析式为:y=a(x+2)2+8,代入点B(0,0)得:0= a(x+2)2+8,则a=2,即:B点横坐标取最小值时

21、,抛物线的解析式为:y= -2(x+2)2+8.当A点横坐标取最大值时,抛物线顶点应取E,则此时抛物线的解析式:y=-2 (x8)2+2,令y=0,解得x1=7,x2=9点A的横坐标的最大值为7.故答案为7.【点睛】此题主要考查二次函数的平移问题,解题的关键是熟知待定系数法求解解析式.三、解答题(共78分)19、 (1)详见解析;(2)9【分析】(1)直接利用两组对边分别平行的四边形是平行四边形,进而得出答案;(2)利用锐角三角函数关系得,设,再利用勾股定理得出AE的长,进而求出答案【详解】(1),四边形是平行四边形;(2) 四边形是平行四边形,,,设,即,解得:,【点睛】本题主要考查了平行四

22、边形的判定以及锐角三角函数关系、勾股定理,正确得出是解题关键20、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元【分析】(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数

23、关系是解题关键.21、(1)=8(环),=8(环);(2),;(3)甲胜出,理由见解析;(4)见解析【分析】(1)根据平均数的计算公式先求出平均数, (2)根据方差公式进行计算即可;(3)根据方差的意义,方差越小越稳定,即可得出答案(4)叙述符合题意,有道理即可【详解】(1)(环),(环)(2)(3)甲胜出因为,甲的成绩稳定,所以甲胜出(4)如果希望乙胜出,应该制定的评判规则为:如果平均成绩相同,则命中满环(10环)次数多者胜出(答案不唯一)【点睛】本题考查一组数据的平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定22、(1)详见

24、解析;(1)详见解析;(3).【解析】(1)由题意可证ODAE,且EFAE,可得EFOD,即EF是O的切线;(1)由同弧所对的圆周角相等,可得DABDGB,由余角的性质可得DGBBDF;(3)由题意可得BOG90,根据勾股定理可求GH的长【详解】解:(1)证明:连接OD,OAOD,OADODA又AD平分BAC,OADCADODACAD,ODAE,又EFAE,ODEF,EF是O的切线(1)AB是O的直径,ADB90DAB+OBD90由(1)得,EF是O的切线,ODF90BDF+ODB90ODOB,ODBOBDDABBDF又DABDGBDGBBDF(3)连接OG,G是半圆弧中点,BOG90在RtO

25、GH中,OG5,OHOBBH531GH.【点睛】本题考查了切线的判定和性质,角平分线的性质,勾股定理,圆周角定理等知识,熟练运用切线的判定和性质解决问题是本题的关键23、(1)n的值为3或1;(2)t2或4或0,2k2;(3)当n0,n5,1n3时,矩形ABCD的边与图象G有且只有三个公共点【分析】(1)先确定图像G2的顶点坐标和解析式,然后就P分别在图象G1和G2上两种情况讨论求解即可;(2)先分别求出图象G1和G2的解析式,然后就P分别在图象G1和G2上两种情况讨论求解即可;结合图像如图1,即可确定k的取值范围;(3)结合图像如图2,根据分n的取值范围分类讨论即可求解【详解】(1)抛物线y

26、x24x+n(x2)2+n4,顶点坐标为(2,n4),将G1绕坐标原点旋转180得到图象G2,图象G2的顶点坐标为(2,n+4),图象G2的解析式为:y(x+2)2+4n,若点P(1,2)在图象G1上,29+n4,n3;若点P(1,2)在图象G2上,21+4n,n1;综上所述:点P(1,2)在图象G上,n的值为3或1;(2)当n1时,则图象G1的解析式为:y(x2)25,图象G2的解析式为:y(x+2)2+5,若点Q(t,1)在图象G1上,1(t2)25,t2,若点Q(t,1)在图象G2上,1(t+2)2+5,t14,t20如图1,当x2时,y5,当x2时,y5,对于图象G1,在y轴右侧,当y5时,则5(x2)25,x2+3,对于图象G2,在y轴左侧,当y5时,则5(x+2)2+5,x2,当kx3(k3)时,图象G对应函数的最大值为5,最小值为5,2k2;(3)如图2,图象G2的解析式为:y(x+2)2+4n,图象G1的解析式为:y(x2)2+n4,图象G2的顶点坐标为(2,n+4),与y轴交点为(0,n),图象G1的顶点坐标为(2,n4),与y轴交点为(0,n),当n1时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD最多1交点,当1n0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有3交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论