2023学年江苏省镇江市丹阳市数学九上期末监测试题含解析_第1页
2023学年江苏省镇江市丹阳市数学九上期末监测试题含解析_第2页
2023学年江苏省镇江市丹阳市数学九上期末监测试题含解析_第3页
2023学年江苏省镇江市丹阳市数学九上期末监测试题含解析_第4页
2023学年江苏省镇江市丹阳市数学九上期末监测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一

2、并交回。一、选择题(每题4分,共48分)1已知抛物线yx2+3向左平移2个单位,那么平移后的抛物线表达式是()Ay(x+2)2+3 By(x2)2+3 Cyx2+1 Dyx2+52某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是()ABCD3若将二次函数的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )ABCD4下列图形中,中心对称图形有( )A4个B3个C2个D1个5如图,在RtABC中,CD是斜边AB上的中线,若CD

3、5,AC6,则tanB的值是()ABCD6下列事件中,属于必然事件的是( )A2020年的除夕是晴天B太阳从东边升起C打开电视正在播放新闻联播D在一个都是白球的盒子里,摸到红球7如图,在O中,ABOC,垂足为点D,AB8,CD2,若点P是优弧上的任意一点,则sinAPB()ABCD8已知二次函数的图象如图所示,有下列结论:; ;其中正确结论的个数是( )ABCD9直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()ABCD10已知在中,那么下列说法中正确的是( )ABCD11如图,ABC中,A65,AB6,AC3,将ABC沿图中的虚线剪开,剪下的阴影三角形与原

4、三角形不构成相似的是( )ABCD12若,那么的值是( )ABCD二、填空题(每题4分,共24分)13在等腰中,点是所在平面内一点,且,则的取值范围是_14在矩形ABCD中,P为CD边上一点(DPCP),APB90将ADP沿AP翻折得到ADP,PD的延长线交边AB于点M,过点B作BNMP交DC于点N,连接AC,分别交PM,PB于点E,F现有以下结论:连接DD,则AP垂直平分DD;四边形PMBN是菱形;AD2DPPC;若AD2DP,则;其中正确的结论是_(填写所有正确结论的序号)15如图,矩形的对角线经过坐标原点,矩形的边分别平行于坐标轴,点在反比例函数的图象上.若点的坐标为,则的值为_16若a

5、是方程x2x10的一个根,则2a22a5_17如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边PAB,使AB落在x轴上,则POB的面积为_18如图,是由10个小正三角形构造成的网格图(每个小正三角形的边长均为1),则sin(+)_三、解答题(共78分)19(8分)如图,在矩形ABCD中,AB6,BC13,BE4,点F从点B出发,在折线段BAAD上运动,连接EF,当EFBC时停止运动,过点E作EGEF,交矩形的边于点G,连接FG设点F运动的路程为x,EFG的面积为S(1)当点F与点A重合时,点G恰好到达点D,此时x ,当EFBC时,x ;(2)求S关于x的函数解析式,并直

6、接写出自变量x的取值范围;(3)当S15时,求此时x的值20(8分)如图,已知一个,其中,点分别是边上的点,连结,且(1)求证:;(2)若求的面积21(8分)如图1,在矩形中,点从点出发向点移动,速度为每秒1个单位长度,点从点出发向点移动,速度为每秒2个单位长度. 两点同时出发,且其中的任何一点到达终点后,另一点的移动同时停止. (1)若两点的运动时间为,当为何值时,?(2)在(1)的情况下,猜想与的位置关系并证明你的结论. (3)如图2,当时,其他条件不变,若(2)中的结论仍成立,则_. 当,时,其他条件不变,若(2)中的结论仍成立,则_(用含的代数式表示).22(10分)已知:如图,是正方

7、形的对角线上的两点,且.求证:四边形是菱形.23(10分)如图,已知A是O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB(1)求证:AB是O的切线;(2)若ACD=45,OC=2,求弦CD的长24(10分)有一辆宽为的货车(如图),要通过一条抛物线形隧道(如图)为确保车辆安全通行,规定货车车顶左右两侧离隧道内壁的垂直高度至少为已知隧道的跨度为,拱高为(1)若隧道为单车道,货车高为,该货车能否安全通行?为什么?(2)若隧道为双车道,且两车道之间有的隔离带,通过计算说明该货车能够通行的最大安全限高 25(12分)如图,某数学兴趣小组的同学利用标杆测量旗杆的高度:将一根米高的

8、标杆竖直放在某一位置,有一名同学站在处与标杆底端、旗杆底端成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆米,离旗杆米如果站立的同学的眼睛距地面米,过点作于点,交于点,求旗杆的高度26一种拉杆式旅行箱的示意图如图所示,箱体长,拉杆最大伸长距离,(点在同一条直线上),在箱体的底端装有一圆形滚轮与水平地面切于点某一时刻,点距离水平面,点距离水平面(1)求圆形滚轮的半径的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点处且拉杆达到最大延伸距离时,点距离水平地面,求此时拉杆箱与水平面所成角的大小(精确到,参考数据:)参考答案一、选择题(每题4

9、分,共48分)1、A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线yx23向左平移2个单位可得y(x2)23,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.2、B【分析】根据概率公式即可得出答案【详解】解:共设有20道试题,其中文明校园创建标准试题6道,他选中文明校园创建标准的概率是,故选:B【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)3、C【

10、分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.4、B【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行解答【详解】第一、二、三个图形是中心对称图形,第四个图形是轴对称图形,不是中心对称图形.综上所述,是中心对称图形的有3个.故答案选B.【点睛】本题考查了中心对称图形,解题的关键是熟练的掌握中心对称图形的定义.5

11、、C【解析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC的长度,然后根据锐角的正切等于对边比邻边解答【详解】CD是斜边AB上的中线,CD=5,AB=2CD=10,根据勾股定理,BC= tanB=故选C【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握6、B【分析】根据必然事件和随机事件的概念进行分析【详解】A选项:2020年的元旦是晴天,属于随机事件,故不合题意;B选项:太阳从东边升起,属于必然事件,故符合题意;C选项:打开电视正

12、在播放新闻联播,属于随机事件,故不合题意;D选项:在一个都是白球的盒子里,摸到红球,属于不可能事件,故不合题意故选:B【点睛】考查了确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件;注:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的在一定条件下,可能发生也可能不发生的事件,称为随机事件7、B【分析】如图,连接OA,OB设OAOBx利用勾股定理构建方程求出x,再证明APBAOD即可解决问题【详解】如图,连接OA,OB设OAOBxOCAB,ADDB4,在RtAOD中,则有x242+(x2)2,x5,OAOB

13、,ODAB,AODBOD,APBAOBAOD,sinAPBsinAOD,故选:B【点睛】考查了圆周角定理和解直角三角形等知识,解题的关键是熟练灵活运用其相关知识8、B【分析】利用特殊值法求和,根据图像判断出a、b和c的值判断和,再根据对称轴求出a和b的关系,再用特殊值法判断,即可得出答案.【详解】令x=-1,则y=a-b+c,根据图像可得,当x=-1时,y0,所以a-b+c0,故错误;由图可得,a0,b0,c0,所以abc0,a-c0,故正确;令x=-2,则y=4a-2b+c,根据图像可得,当x=-2时,y0,所以4a-2b+c0,故正确;,所以-b=2a,a-b+c=a+2a+c=3a+c0

14、,故错误;故答案选择B.【点睛】本题考查的是二次函数,难度偏高,需要熟练掌握二次函数的图像与性质.9、A【解析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y = 12以上是二次函数的表达式,图象是一条抛物线,所以A选项是正确的.【点睛】考查了现实中的二次函数问题,考查了学生的分析、 解决实际问题的能力.10、A【分析】利用同角三角函数的关系解答【详解】在RtABC中,C=90,则cosA= A、cosB

15、=sinA=,故本选项符合题意B、cotA= 故本选项不符合题意C、tanA= 故本选项不符合题意D、cotB=tanA= 故本选项不符合题意故选:A【点睛】此题考查同角三角函数关系,解题关键在于掌握(1)平方关系:sin2A+cos2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比.11、C【分析】根据相似三角形的判定定理对各选项进行逐一判定即可【详解】A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;C、两三角形的对应角不一定相等,故两三角

16、形不相似,故本选项符合题意;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意故选:C【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键12、A【分析】根据,可设a2k,则b3k,代入所求的式子即可求解【详解】,设a2k,则b3k,则原式=故选:A【点睛】本题考查了比例的性质,根据,正确设出未知数是本题的关键二、填空题(每题4分,共24分)13、【分析】根据题意可知点P在以AB为直径,AB的中点O为圆心的上,然后画出图形,找到P点离C点距离最近的点和最远的点,然后通过勾股定理求出OC的长度,则答案可求【详解】 点P在以AB为直径,AB的中点O为圆心

17、的上如图,连接CO交于点,并延长CO交于点 当点P位于点时,PC的长度最小,此时 当点P位于点时,PC的长度最大,此时 故答案为:【点睛】本题主要考查线段的取值范围,能够找到P点的运动轨迹是圆是解题的关键14、【分析】根据折叠的性质得出AP垂直平分DD,判断出正确过点P作PGAB于点G,易知四边形DPGA,四边形PCBG是矩形,所以ADPG,DPAG,GBPC,易证APGPBG,所以PG2AGGB,即AD2DPPC判断出正确;DPAB,所以DPAPAM,由题意可知:DPAAPM,所以PAMAPM,由于APBPAMAPBAPM,即ABPMPB,从而可知PMMBAM,又易证四边形PMBN是平行四边

18、形,所以四边形PMBN是菱形;判断出正确;由于,可设DP1,AD2,由(1)可知:AGDP1,PGAD2,从而求出GBPC4,ABAG+GB5,由于CPAB,从而可证PCFBAF,PCEMAE,从而可得 ,从而可求出EFAFAEACAC,从而可得,判断出错误【详解】解:将ADP沿AP翻折得到ADP,AP垂直平分DD,故正确;解法一:过点P作PGAB于点G,易知四边形DPGA,四边形PCBG是矩形,ADPG,DPAG,GBPCAPB90,APG+GPBGPB+PBG90,APGPBG,APGPBG,PG2AGGB,即AD2DPPC;解法二:易证:ADPPCB,由于ADCB,AD2DPPC;故正确

19、;DPAB,DPAPAM,由题意可知:DPAAPM,PAMAPM,APBPAMAPBAPM,即ABPMPBAMPM,PMMB,PMMB,又易证四边形PMBN是平行四边形,四边形PMBN是菱形;故正确;由于,可设DP1,AD2,由(1)可知:AGDP1,PGAD2,PG2AGGB,41GB,GBPC4,ABAG+GB5,CPAB,PCFBAF,又易证:PCEMAE,AMAB,EFAFAEACAC,故错误,即:正确的有 ,故答案为: 【点睛】本题是一道关于矩形折叠的综合题目,考查的知识点有折叠的性质,矩形的性质,相似三角形的性质,菱形的判定等,此题充分考查了学生对所学知识点的掌握情况以及综合利用能

20、力,是一道很好的题目.15、1或-3【分析】由题意根据反比例函数中值的几何意义即函数图像上一点分别作关于x、y轴的垂线与原点所围成的矩形的面积为,据此进行分析求解即可.【详解】解:由题意图形分成如下几部分,矩形的对角线为,即,根据矩形性质可知,点的坐标为,解得1或-3.故答案为:1或-3.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键16、1【分析】根据一元二次方程的解的定义,将x=a代入方程x2-x-1=0,列出关于a的一元二次方程,通过解方程求得a2-a的值后,将其整体代入所求的代数式并求值即可【详解】根据题意,得a2

21、-a-1=0,即a2-a=1;2a2-2a+5=2(a2-a)+5=21+5=1,即2a2-2a+5=1故答案是:1【点睛】此题主要考查了方程解的定义此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值17、 【解析】如图,过点P作PHOB于点H,点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,9=m2,且m0,解得,m=3.PH=OH=3.PAB是等边三角形,PAH=60.根据锐角三角函数,得AH=.OB=3+SPOB=OBPH=.18、【分析】连接BC,构造直角三角形ABC,由正

22、三角形及菱形的对角线平分对角的性质, 得出BCD=30,ABC=90,从而+=ACB,分别求出ABC的边长,【详解】如图,连接BC,上图是由10个小正三角形构造成的网格图,任意相邻两个小正三角形都组成一个菱形,BCD30,ABC90,+ACB,每个小正三角形的边长均为1,AB2,在RtDBC中, BC,在RtABC中,AC,sin(+)sinACB,故答案为: 【点睛】本题考查了构造直角三角形求三角函数值,解决本题的关键是要正确作出辅助线,明确正弦函数的定义.三、解答题(共78分)19、(1)6;10;(2)Sx2+9x+12(0 x6);Sx221x+102(6x10);(3)6+2【分析】

23、(1)当点F与点A重合时,xAB6;当EFBC时,AFBE4,xAB+AF6+410;(2)分两种情况:当点F在AB上时,作GHBC于H,则四边形ABHG是矩形,证明EFBGEH,得出,求出EHx,得出AGBHBE+EH4+x,由梯形面积公式和三角形面积公式即可得出答案;当点F在AD上时,作FMBC于M,则FMAB6,AFBM,同得EFMGEC,得出,求出GC15x,得出DGCDCGx9,ECBCBE9,AFx6,DFADAF19x,由梯形面积公式和三角形面积公式即可得出答案;(3)当x2+9x+1215时,当x221x+10215时,分别解方程即可【详解】(1)当点F与点A重合时,xAB6;

24、当EFBC时,AFBE4,xAB+AF6+410;故答案为:6;10;(2)四边形ABCD是矩形,BCD90,CDAB6,ADBC13,分两种情况:当点F在AB上时,如图1所示:作GHBC于H,则四边形ABHG是矩形,GHAB6,AGBH,GHEB90,EGH+GEH90,EGEF,FEB+GEH90,FEBEGH,EFBGEH,即,EHx,AGBHBE+EH4+x,EFG的面积为S梯形ABEG的面积EFB的面积AGF的面积(4+4+x)64x(6x)(4+x)x2+9x+12,即Sx2+9x+12(0 x6);当点F在AD上时,如图2所示:作FMBC于M,则FMAB6,AFBM,同得:EFM

25、GEC,即,解得:GC15x,DGCDCGx9,ECBCBE9,AFx6,DFADAF19x,EFG的面积为S梯形CDFE的面积CEG的面积DFG的面积(9+19x)69(15x)(19x)(x9)x221x+102即Sx221x+102(6x10);(3)当x2+9x+1215时,解得:x6(负值舍去),x6+;当x221x+10215时,解得:x14(不合题意舍去);当S15时,此时x的值为6+【点睛】本题考查二次函数的动点问题,题目较难,解题时需注意分类讨论,避免漏解.20、(1)见解析;(2)【分析】(1)根据AA即可证明;(2)根据解直角三角形的方法求出AF,EF,利用三角形的面积公

26、式即可求解【详解】解:,.由得:.在中,.,.【点睛】此题主要考查相似三角形的判定与解直角三角形,解题的关键是熟知相似三角形的判定定理与是三角函数的应用21、(1);(2),证明见解析;(3);【分析】(1)根据相似三角形的性质,可得,进而列出方程,求出t的值.(2)根据相似三角形的性质,可得,进而根据等量关系以及矩形的性质,得出,进而得出结论.(3)根据全等三角形的判定,可得出AMBDNA,再根据全等三角形的性质,即可得出AM=DN,得出方程,求解即可得出答案.【详解】解:(1),解得. (2). 证明:,. ,即. (3)ABEBAE=90AD=AB,BAD=ADC=90AMBDNAAM=

27、DNt=2-2tt=由知,BAD=ADC=90=nt=【点睛】本题主要考察了相似三角形和全等三角形,熟练掌握相似三角形的性质和正确找出线段之间的关系是解题的关键.22、见解析【解析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,ACBD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】四边形ABCD是正方形,OD=OB,OA=OC,BDAC,BE=DF,DE=BF,OE=OF,OA=OC,ACEF,OE=OF,四边形AECF为菱形【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.23、(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出OAC是正三角形,然后利用角边关系又可求出CAB=30,从而求出OAB=90,所以判断出直线AB与O相切;(2)作AECD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD【详解】(1)直线AB是O的切线,理由如下:连接OAOC=BC,AC=OB,OC=BC=AC=OA, ACO是等边三角形,O=OCA=60,又B=CAB,B=30,OAB=90AB是O的切线(2)作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论