2023学年山东省青岛即墨市数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2023学年山东省青岛即墨市数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2023学年山东省青岛即墨市数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2023学年山东省青岛即墨市数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2023学年山东省青岛即墨市数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1关于的一元二次方程有两个相等的实数根,则的值为( )ABCD2如图,菱形ABCD中,EFAC,垂足为点H,分别交AD、AB及CB的延长线交于点E、M、F,且AE:FB1:2,则AH:AC的值为()ABCD3在ABC中,I是内心,BIC=130,则A的度数是

2、( )A40B50C65D804关于的一元一次方程的解为,则的值为( )A5B4C3D25某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A5.035106B50.35105C5.035106D5.0351056如图,在平面直角坐标系中,O的半径为1,则直线与O的位置关系是( )A相离B相切C相交D以上三种情况都有可能7已知抛物线yx2+3向左平移2个单位,那么平移后的抛物线表达式是()Ay(x+2)2+3 By(x2)2+3 Cyx2+1 Dyx2+58顺次连接四边形ABCD各边的中点,所得四边形是( )A平行四边形B对角线互相垂直的四边形C矩形D菱形9点A(-2,1

3、)关于原点对称的点A的坐标是( )A(2,1)B(-2,-1)C(-1,2)D(2,-1)104月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米将439 000用科学记数法表示应为( )A0.439106B4.39106C4.39105D13910311某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“”,设实际每天铺设管道x米,则可得方程 =15,根据此情景,题中用“”表示的缺失的条件应补为()A每天比原计划

4、多铺设10米,结果延期15天才完成B每天比原计划少铺设10米,结果延期15天才完成C每天比原计划多铺设10米,结果提前15天才完成D每天比原计划少铺设10米,结果提前15天才完成12如图,四边形ABCD为O的内接四边形,E是BC延长线上的一点,已知BOD130,则DCE的度数为()A45B50C65D75二、填空题(每题4分,共24分)13在一个不透明的袋子中装有个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球放回,混合均匀后再摸出一个球,两次都摸到红球的概率是_14已知点E是线段AB的黄金分割点,且,若AB=2则BE=_.15圆锥的底面半径为6,母线长为10,则圆锥的侧面积为_.16

5、在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_17玫瑰花的花粉直径约为0.000084米,数据0.000084用科学记数法表示为_18已知二次函数的顶点为,且经过,将该抛物线沿轴向右平移,当它再次经过点时,所得抛物线的表达式为_三、解答题(共78分)19(8分)如图,四边形ABCD是矩形,AB6,BC4,点E在边AB上(不与点A、B重合),过点D作DFDE,交边BC的延长线于点F(1)求证:DAEDCF(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式(3)当四边形EBFD为轴对称图形时,则cosAED的值为 20(8分)如图,平面直角坐标系xOy中点A

6、的坐标为(1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值21(8分)某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍)下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)这次活动一共调查了 名学生;(2)在扇形统计图中,

7、“其他”所在扇形的圆心角等于 度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是 22(10分) “江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元(1)求购进一件甲种礼品、一件乙种礼品各需多少元;(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了30%,件乙种礼品价格比第次购进时降低了10元,如果此次购进甲、乙两种礼品

8、的总费用不超过3100元,那么这家礼品店最多可购进多少件甲种礼品?23(10分)对于平面直角坐标系中的两个图形K1和K2,给出如下定义:点G为图形K1上任意一点,点H为K2图形上任意一点,如果G,H两点间的距离有最小值,则称这个最小值为图形K1和K2的“近距离”。如图1,已知ABC,A(-1,-8),B(9,2),C(-1,2),边长为的正方形PQMN,对角线NQ平行于x轴或落在x轴上(1)填空:原点O与线段BC的“近距离”为 ;如图1,正方形PQMN在ABC内,中心O坐标为(m,0),若正方形PQMN与ABC的边界的“近距离”为1,则m的取值范围为 ;(2)已知抛物线C:,且-1x9,若抛物

9、线C与ABC的“近距离”为1,求a的值;(3)如图2,已知点D为线段AB上一点,且D(5,-2),将ABC绕点A顺时针旋转(00,方程有两个相等的实数根时=0,方程没有实数根时AE,BE=AB,而AB=2,BE=;故答案为:;【点睛】本题主要考查了黄金分割,掌握黄金分割是解题的关键.15、【分析】圆锥的侧面积底面半径母线长,把相应数值代入即可求解【详解】圆锥的侧面积61060 cm1故答案为.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键16、1【分析】极差是指一组数据中最大数据与最小数据的差极差最大值最小值,根据极差的定义即可解答【详解】解:由题意可知,极差为28121,故答案为:1【

10、点睛】本题考查了极差的定义,解题时牢记定义是关键17、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】数据0.000084用科学记数法表示为故答案为:【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定18、或【分析】由二次函数解析式的顶点式写出二次函数坐标为,将点P坐标代入二次函数解析式,求出a的值,如图,抛物线向右平移再次经过点P,即点P的对称点点Q与点P重合,向右移动了

11、4个单位,写出抛物线解析式即可【详解】由顶点坐标(0,0)可设二次函数解析式为,将P(2,2)代入解析式可得a=,所以,如图,图像上,点P的对称点为点Q(2,2),当点Q与点P重合时,向右移动了4个单位,所以抛物线解析式为或故答案为或【点睛】本题主要考查二次函数顶点式求解析式、二次函数的图像和性质以及二次函数的平移,本题关键在于根据题意确定出向右平移的单位三、解答题(共78分)19、(1)见解析;(2)yx+4;(3)【分析】(1)根据矩形的性质和余角的性质得到A=ADC=DCB=90,ADE=CDF,最后运用相似三角形的判定定理证明即可;(2)运用相似三角形的性质解答即可;(3)根据轴对称图

12、形的性质可得DE=BE,再运用勾股定理可求出AE,DE的长,最后用余弦的定义解答即可.【详解】(1)证明四边形ABCD是矩形,ADBC,ABCDADC90,ADBC4,ABCD6,ADE+EDC90,DFDE, EDC+CDF90,ADECDF,且ADCF90,DAEDCF;(2)DAEDCF, ,yx+4;(3)四边形EBFD为轴对称图形,DEBE,AD2+AE2DE2,16+AE2(6AE)2,AE,DEBE,cosAED ,故答案为:【点睛】本题属于相似形三角形综合题,考查了相似三角形的判定和性质、矩形的性质、勾股定理、轴对称图形的性质等知识,灵活运用相似三角形的判定和性质是解答本题的关

13、键.20、(1)E点坐标为(0, );(2) ;(3)四边形ABNO面积的最大值为,此时N点坐标为(, )【分析】(1)先利用待定系数法求直线AB的解析式,与y轴的交点即为点E;(2)利用待定系数法抛物线的函数解析式;(3)先设N(m,m2m)(0m3),则G(m,m),根据面积和表示四边形ABNO的面积,利用二次函数的最大值可得结论【详解】(1)设直线AB的解析式为y=mx+n,把A(-1,1),B(3,3)代入得,解得,所以直线AB的解析式为yx+, 当x=0时,y0+,所以E点坐标为(0,); (2)设抛物线解析式为y=ax2+bx+c,把A(-1,1),B(3,3),O(0,0)代入得

14、,解得,所以抛物线解析式为yx2x; (3)如图,作NGy轴交OB于G,OB的解析式为y=x,设N(m,m2m)(0m3),则G(m,m),GNm(m2m)m2+m,SAOB=SAOE+SBOE=1+3=3,SBONSONG+SBNG3(m2+m)m2+m所以S四边形ABNOSBON+SAOBm2+m+3 (m)2+当m时,四边形ABNO面积的最大值,最大值为,此时N点坐标为(,)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数和一次函数的性质;理解坐标与图形性质,利用面积的和差计算不规则图形的面积21、(1)200;(2)36

15、;(3)补图见解析;(4)180名.【分析】(1)根据条形图可知喜欢阅读“小说”的有80人,根据在扇形图中所占比例得出调查学生总数;(2)根据条形图可知阅读“其他”的有20人,根据总人数可求出它在扇形图中所占比例;(3)求出第3组人数画出图形即可;(4)根据喜欢阅读“科普常识”的学生所占比例,即可估计该年级喜欢阅读“科普常识”的人数【详解】解:(1)8040%=200(人),故这次活动一共调查了200名学生.(2)20200360=36,故在扇形统计图中,“其他”所在扇形的圆心角等于36.(3)20080402060(人),即喜欢阅读“科普常识”的学生有60人,补全条形统计图如图所示:(4)6

16、0200100%30%,60030%180(人),故估计该年级喜欢阅读“科普常识”的人数为180.22、(1)购进一件甲种礼品需要50元,一件乙种礼品需70元;(2)最多可购进20件甲种礼品【分析】(1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元根据题意得:,解方程可得;(2)设购进甲m件,则购进乙件根据题意得:,解不等式可得.【详解】解:(1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元根据题意得:解得:x=50经检验,x=50是原方程的解,且符合题意=70元答:购进一件甲种礼品需要50元,一件乙种礼品需70元(2)设购进甲m件,则购进乙件根据题意得:解得:答:最多

17、可购进20件甲种礼品【点睛】考核知识点:分式方程应用.根据销售价格关系列出方程和不等式是关键.23、(1)2;(2)或;(3)点E运动形成的图形与正方形PQMN的“近距离”为【分析】(1)由垂线段最短,即可得到答案;根据题意,找出正方形PQMN与ABC的边界的“近距离”为1,的临界点,然后分别求出m的最小值和最大值,即可得到m的取值范围;(2)根据题意,抛物线与ABC的“近距离”为1时,可分为两种情况:当点C到抛物线的距离为1,即CD=1;当抛物线与线段AB的距离为1时,即GH=1;分别求出a的值,即可得到答案;(3)根据题意,取AB的中点F,连接EF,求出EF的长度,然后根据题意,求出点F,

18、点Q的坐标,求出FQ的长度,即可得到EQ的长度,即可得到答案【详解】解:(1)B(9,2),C(,2),点B、C的纵坐标相同,线段BCx轴,原点O到线段BC的最短距离为2;即原点O与线段BC的“近距离”为2;故答案为:2;A(-1,-8),B(9,2),C(-1,2),线段BCx轴,线段ACy轴,AC=BC=10,ABC是等腰直角三角形,当点N与点O重合时,点N与线段AC的最短距离为1,则正方形PQMN与ABC的边界的“近距离”为1,此时m为最小值,正方形的边长为,由勾股定理,得:,(舍去);当点Q到线段AB的距离为1时,此时m为最大值,如图:QN=1,QMN是等腰直角三角形,QM=,BD=9

19、,BDE是等腰直角三角形,DE=9,OEM是等腰直角三角形,OE=OM=7,m的最大值为:,m的取值范围为:;故答案为:;(2)抛物线C:,且,若抛物线C与ABC的“近距离”为1,由题可知,点C与抛物线的距离为1时,如图:点C的坐标为(,2),但D的坐标为(,3),把点D代入中,有,解得:;当线段AB与抛物线的距离为1时,近距离为1,如图:即GH=1,点H在抛物线上,过点H作AB的平行线,线段AB与y轴相交于点F,作FEEH,垂足为E,EF=GH=1,FDE=A=45,点A(-1,-8),B(9,2),设直线AB为,解得:,直线AB的解析式为:,直线EH的解析式为:;联合与,得,整理得:,直线

20、EH与抛物线有一个交点,解得:;综合上述,a的值为:或;(3)由题意,取AB的中点F,连接EF,如图:点A(-1,-8),B(9,2),在中,F是AD的中点,点E是的中点,点D的坐标为(5,-2),A(-1,-8),点F的坐标为(2,),在正方形PNMQ中,中心点的坐标为(5,),点Q的坐标为(6,),;点E运动形成的图形与正方形PQMN的“近距离”为【点睛】本题考查了图形的运动问题和最短路径问题,考查了二次函数的性质,正方形的性质,等腰直角三角形的性质,一次函数的平移,勾股定理,旋转的性质,根的判别式等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线,作出临界点的图形,从而进行分析注意运用数形结合的思想和分类讨论的思想进行解题难度很大,是中考压轴题24、3小时【分析】本题的等量关系是路程=速度时间本题可根据乙从B到A然后再到B用的时间=甲从A到B用的时间-20分钟-40分钟来列方程【详解】解:设甲从A地到B地步行所用时间为x小时,由题意得:化简得:2x2-5x-3=0,解得:x1=3,x2=-,经检验知x=3符合题意,x=3,甲从A地到B地步行所用时间为3小时【点睛】本题考查分式方程的应用,注意分式方程结果要检验25、旗杆AB的高度为【分析】首先根据三角形外角的性质结合等角对等边可得BE=DE,然后在RtBEC中,根据三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论