版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1下列数学符号中,既是轴对称图形,又是中心对称图形的是( )A
2、BCD2如图,若二次函数的图象的对称轴为,与x轴的一个交点为,则:二次函数的最大值为 ;当时,y随x的增大而增大;当时,其中正确命题的个数是( )A1B2C3D43对于问题:如图1,已知AOB,只用直尺和圆规判断AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则AOB=90.则小意同学判断的依据是( )A等角对等边B线段中垂线上的点到线段两段距离相等C垂线段最短D等腰三角形“三线合一”4下列图形中,是中心对称图形的是()ABCD5如图所示,在半径为10cm的O中,弦AB16cm,OCAB于点C,则
3、OC等于()A3cmB4cmC5cmD6cm6如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为( )A米B 米C 米D米7已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的增大而增大,且-2x1时,y的最大值为9,则a的值为A1或B-或CD18掷一枚质地均匀的硬币10次,下列说法正确的是( )A必有5次正面朝上B可能有5次正面朝上C掷2次必有1次正面朝上D不可能10次正面朝上9用配方法解方程x22x50时,原方程应变形为()A(x+1)26B(x+2)29C(x1)26D(x2)2910如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件
4、错误的是( )ABCD二、填空题(每小题3分,共24分)11点在线段上,且.设,则_.12二次函数y=x24x+5的图象的顶点坐标为 13己知圆锥的母线长为,底面半径为,则它的侧面积为_(结果保留)14如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60的方向,则该船航行的距离(即AB的长)为_.15如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(AOB)为120,OC的长为2cm,则三角板和量角器重叠部分的面积为_16如图,正六
5、边形ABCDEF中的边长为6,点P为对角线BE上一动点,则PC的最小值为_17已知点,在二次函数的图象上,若,则_(填“”“”“”)18如图,直线yax+b过点A(0,2)和点B(3,0),则方程ax+b0的解是_三、解答题(共66分)19(10分)如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.(1)试求、的值,并写出该二次函数表达式;(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?当运动到何处时,四
6、边形的面积最小?此时四边形的面积是多少?20(6分)如图,在一条河流的两岸分别有A、B、C、D四棵景观树,已知AB/CD,某数学活动小组测得DAB=45,CBE=73,AB=10m,CD=30m,请计算这条河的宽度(参考数值:,)21(6分)在平面直角坐标系xOy中,ABC的位置如图所示(1)分别写出ABC各个顶点的坐标;(2)分别写出顶点A关于x轴对称的点A的坐标、顶点B关于y轴对称的点B的坐标及顶点C关于原点对称的点C的坐标;(3)求线段BC的长22(8分)为测量观光塔高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角
7、是30已知楼房高AB约是45m,请根据以上观测数据求观光塔的高23(8分)已知关于的一元二次方程(1)若此方程有两个实数根,求的最小整数值;(2)若此方程的两个实数根为,且满足,求的值24(8分)为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:使用次数05101520人数11431(1)这10位居民一周内使用共享单车次数的中位数是 次,众数是 次(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是 (填“中位数”,“众数”或“平均数”)(3)若该小区有2000名居民,试估计该小区居民
8、一周内使用共享单车的总次数25(10分)解方程:3(x4)22(x4)26(10分)四川是闻名天下的“熊猫之乡”,每年到大熊猫基地游玩的游客络绎不绝,大学生小张加入创业项目,项目帮助她在基地附近租店卖创意熊猫纪念品已知某款熊猫纪念物成本为30元/件,当售价为45元/件时,每天销售250件,售价每上涨1元,销量下降10件(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)若每天该熊猫纪念物的销售量不低于240件的情况下,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?(3)小张决定从这款纪念品每天的销售利润中捐出150元给希望工程,为了保证捐款后这款纪念品每天剩余利润
9、不低于3600元,试确定该熊猫纪念物销售单价的范围参考答案一、选择题(每小题3分,共30分)1、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【点睛】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.2、B【分析】根据二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式即可得;根据时,即可得;根据二次函数的图象即可知其增减性;先根据二次函数的对称性求出二次函数的图象与x轴的另一个交点坐标,再结合
10、函数图象即可得【详解】由二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式得:,即二次函数的最大值为,则命题正确;二次函数的图象与x轴的一个交点为,则命题错误;由二次函数的图象可知,当时,y随x的增大而减小,则命题错误;设二次函数的图象与x轴的另一个交点为,二次函数的对称轴为,与x轴的一个交点为,解得,即二次函数的图象与x轴的另一个交点为,由二次函数的图象可知,当时,则命题正确;综上,正确命题的个数是2,故选:B【点睛】本题考查了二次函数的图象与性质(对称性、增减性、最值)等知识点,熟练掌握二次函数的图象与性质是解题关键3、B【分析】由垂直平分线的判定定理,即可得到答案【详解】
11、解:根据题意,CD=CE,OE=OD,AO是线段DE的垂直平分线,AOB=90;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B【点睛】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断4、D【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D【点睛】本题考查的知识点是中心对称图形,掌握中心对称图形的定义是解此题的关键5、D【分析】
12、根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长【详解】解:连接OA,如图:AB16cm,OCAB,ACAB8cm,在RtOAC中,OC6(cm),故选:D【点睛】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键6、A【详解】解:由题意,在RtABC中,ABC=31,由三角函数关系可知,AC=ABsin=9sin31(米)故选A【点睛】本题主要考查了三角函数关系在直角三角形中的应用7、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出a【详解】二次函数y=ax
13、2+2ax+3a2+3(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0
14、)的开口向下,x-时,y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点8、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案【详解】解:掷一枚质地均匀的硬币10次,不一定有5次正面朝上,选项A不正确;可能有5次正面朝上,选项B正确;掷2次不一定有1次正面朝上,可能两次都反面朝上,选项C不正确可能10次正面朝上,选项D不正确故选:B【点睛】本题考查的是随机事件,掌握随机事件的概念是解题的关键,随机事件是指在一定条件下,可能发生也可能不发生的事件9、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数
15、化为1;(3)等式两边同时加上一次项系数一半的平方【详解】解:由原方程移项,得x22x5,方程的两边同时加上一次项系数2的一半的平方1,得x22x+11(x1)21故选:C【点睛】此题考查利用配方法将一元二次方程变形,熟练掌握配方法的一般步骤是解题的关键.10、D【分析】在与中,已知有一对公共角B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误【详解】A已知B=B, 若,则可以证明两三角形相似,正确,不符合题意;B已知B=B, 若,则可以证明两三角形相似,正确,不符合题意;C已知B=B, 若,则可以证明两三角形相似,正确,不符合题意;D若,但夹的角不是公共等角B,则不能
16、证明两三角形相似,错误,符合题意,故选:D【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键二、填空题(每小题3分,共24分)11、【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案【详解】解:设BP=x,则AP=4-x,根据题意可得,整理为:,利用求根公式解方程得:,(舍去)故答案为:【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键12、(2,1)【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图
17、象和性质13、【分析】求出圆锥的底面圆周长,利用公式即可求出圆锥的侧面积【详解】解:圆锥的底面圆周长为,则圆锥的侧面积为故答案为【点睛】本题考查了圆锥的计算,能将圆锥侧面展开是解题的关键,并熟悉相应的计算公式14、1【解析】过点A作ADOB于D先解RtAOD,得出AD=OA=1,再由ABD是等腰直角三角形,得出BD=AD=1,则AB=AD=1【详解】如图,过点A作ADOB于D在RtAOD中,ADO=90,AOD=30,OA=4,AD=OA=1在RtABD中,ADB=90,B=CAB-AOB=75-30=45,BD=AD=1,AB=AD=1即该船航行的距离(即AB的长)为1故答案为1【点睛】本题
18、考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键15、【分析】由图可知,三角板和量角器重叠部分的面积为扇形OAB的面积与OBC面积的和,由此其解【详解】解: AOB=120,BOC=60在RtOBC中,OC=2cm,BOC=60,故答案为:16、.【分析】如图,过点C作CPBE于P,可得CG为PC的最小值,由ABCDEF是正六边形,根据多边形内角和公式可得GBC=60,进而可得BCG=30,根据含30角的直角三角形的性质及勾股定理即可求出PC的长.【详解】如图,过点C作CGBE于G,点P为对角线BE上一动点,点P与点G重合时,PC最短,即CG为PC的最小值,
19、ABCDEF是正六边形,ABC=120,GBC=60,BCG=30,BC=6,BG=BC=3,CG=.故答案为:【点睛】本题考查正六边形的性质、含30角的直角三角形的性质及勾股定理,根据垂线段最短得出点P的位置,并熟练掌握多边形内角和公式是解题关键.17、【解析】抛物线的对称轴为:x=1,当x1时,y随x的增大而增大.若x1x21时,y1y2.故答案为18、x1【分析】所求方程ax+b0的解,即为函数yax+b图像与x轴交点横坐标,根据已知条件中点B即可确定【详解】解:方程ax+b0的解,即为函数yax+b图象与x轴交点的横坐标,直线yax+b过B(1,0),方程ax+b0的解是x1,故答案为
20、:x1【点睛】本题主要考查了一次函数与一元一次方程的关系,掌握一次函数与一元一次方程之间的关系是解题的关键.三、解答题(共66分)19、(1),;(2) 当点运动到距离点个单位长度处,有;当点运动到距离点个单位处时,四边形面积最小,最小值为.【分析】(1)根据一次函数解析式求出A和C的坐标,再由ABC是等腰三角形可求出点B的坐标,根据平行四边形的性质求出点D的坐标,利用待定系数法即可得出二次函数的表达式;(2)设点P运动了t秒,PQAC,进而求出AP、CQ和AQ的值,再由APQCAO,利用对应边成比例可求出t的值,即可得出答案;将问题化简为APQ的面积的最大值,根据几何关系列出关于时间的二次函
21、数,根据二次函数的性质,求出函数的最大值,即求出APQ的面积的最大值,进而求出四边形PDCQ面积的最小值.【详解】解:(1)由,令,得,所以点;令,得,所以点,是以为底边的等腰三角形,点坐标为,又四边形是平行四边形,点坐标为,将点、点代入二次函数,可得,解得:,故该二次函数解析式为:.(2),.设点运动了秒时,此时,即,解得:.即当点运动到距离点个单位长度处,有.,且,当的面积最大时,四边形的面积最小,当动点运动秒时,设底边上的高为,作于点,由可得:,解得:,当时,达到最大值,此时,故当点运动到距离点个单位处时,四边形面积最小,最小值为.【点睛】本题考查的是二次函数的综合题,难度系数较大,解题
22、关键是将四边形PDCQ面积的最小值转化为APQ的面积的最大值并根据题意列出的函数关系式.20、m【分析】分别过C,D作CFAE于F,DGAE于F,构建直角三角形解答即可【详解】分别过C,D作CFAE于F,DGAE于F,AGD=BFC=90,ABCD,FCD=90,四边形CFGD是矩形,CD=FG=30m,CF=DG,在直角三角形ADG中,DAG=45,AG=DG,在直角三角形BCF中,FBC=73,AG=AB+BF+FG=DG,即10+BF+30= ,解得:BF= m,则,答:这条河的宽度为m【点睛】本题考查解直角三角形的应用,要求学生能借助辅助线构造直角三角形并解直角三角形21、(1)A(-
23、4,3),C(-2,5),B(3,0);(2)点A的坐标为:(-4,-3),B的坐标为:(-3,0),点C的坐标为:(2,-5);(3)5.【分析】(1)直接利用坐标系得出各点坐标即可;(2)利用关于坐标轴对称点的性质分别得出答案;(3)直接利用勾股定理得出答案【详解】(1)A(-4,3),C(-2,5),B(3,0); (2)如图所示:点A的坐标为:(-4,-3),B的坐标为:(-3,0),点C的坐标为:(2,-5);(3)线段BC的长为: =5【点睛】此题主要考查关于坐标轴对称点的性质,勾股定理,正确得出对应点位置是解题关键22、135【分析】根据“爬到该楼房顶端B点处观测观光塔底部D处的
24、俯角是30”可以求出AD的长,然后根据“在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60”求出CD的长即可.【详解】爬到该楼房顶端B点处观测观光塔底部D处的俯角是30,ADB=30,在RtABD中,AD=,AD=45m,在一楼房的底端A点处观测观光塔顶端C处的仰角是60,在RtACD中,CD=ADtan60=45=135m.故观光塔高度为135m【点睛】本题主要考查了三角函数的应用,熟练掌握相关概念是解题关键.23、(1)-4;(2)【分析】(1)根据题意利用判别式的意义进行分析,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)由题意利用根与系数的关系得到,进而再利用,接着解关于m的方程确定m的值【详解】解:(1)方程有两个实数根,即的最小整数值为.(2)由根与系数的关系得:,由得:,.【点睛】本题考查根与系数的关系以及根的判别式,注意掌握若,是一元二次方程的两根时,则有24、(1)10,10;(2)中位数和众数;(3)22000【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是:(次),根据使用次数可得:众数为10次;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牛头刨床课程设计4点
- 活塞销工艺课程设计
- 电力拖动技术课程设计
- 北师大版五年级上册数学期末试卷含答案
- 电子综合课程设计
- 火灾报警模电课程设计
- 2024铁路货物运输单(合同范本)运输合同
- 2024短期借款合同印花税规定
- 机械设计课程设计答案5
- 浙江省【高等职业技术教育招生考试】-商业类(电子商务)-职业技能理论知识(一)(答案版)
- 人教版三年级数学上册第四单元:加减法竖式计算专项练习(解析版)
- 《医务人员医德规范》课件
- 手术室手术部医护人员辐射防护与管理
- 高中物理光电效应知识点及高中物理光学知识点总结
- 水质监测运维方案
- 《清洁能源的应用》课件
- 16.分式共19节集体备课
- 城市人员走失搜救方案
- 完整版成品及半成品保护措施
- 管理培训教材-NPI新产品导入
- 视盘水肿治疗及护理
评论
0/150
提交评论