山东省临沂市莒南县2022年数学九年级第一学期期末质量检测模拟试题含解析_第1页
山东省临沂市莒南县2022年数学九年级第一学期期末质量检测模拟试题含解析_第2页
山东省临沂市莒南县2022年数学九年级第一学期期末质量检测模拟试题含解析_第3页
山东省临沂市莒南县2022年数学九年级第一学期期末质量检测模拟试题含解析_第4页
山东省临沂市莒南县2022年数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1二次函数的图象与轴的交点个数是( )A2个B1个C0个D不能确定2下列美丽的壮锦图案是中心对称图形的是()ABCD3如图所示,二次函数yax2+bx+c的图象开口向上,且对称轴在(1,0)的左边,下列结论一定正确的是()Aabc0B2ab0Cb24ac0Dab+c14如图,A、D是O上的两个点,

2、若ADC33,则ACO的大小为( )A57B66C67D445数据60,70,40,30这四个数的平均数是()A40B50C60D706下列各数中,属于无理数的是( )ABCD7如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A1:3B1:4C2:3D1:28二次函数与一次函数在同一坐标系中的大致图象可能是()ABCD9如图,在中,折叠使得点落在边上的点处,折痕为 连接、,下列结论:是等腰直角三角形; ;其中正确的个数是()A1B2C3D410如图,一个透明的玻璃正方体表面嵌有一根黑色的铁丝这根铁丝在正方体俯视图中的形状是(

3、)ABCD二、填空题(每小题3分,共24分)11一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,1随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_12若m22m1=0,则代数式2m24m+3的值为 13若函数是反比例函数,则_14若,则_.15如图,由边长为1的小正方形组成的网格中,点为格点(即小正方形的顶点),与相交于点,则的长为_16如图,点A为函数y(x0)图象上一点,连接OA,交函数y(x0)的图象于点B,点C是x轴上一点,且AOAC,则ABC的面积为_.17若抛物线与轴没有交点,则的取值范围是_18如图所示,在中,将绕点旋转,当点与点重

4、合时,点落在点处,如果,那么的中点和的中点的距离是_.三、解答题(共66分)19(10分)如图,在平面直角坐标系中,一次函数ykx+b的图象与x轴交于点A(3,0),与y轴交于点B,且与正比例函数yx的图象交点为C(m,4)(1)求一次函数ykx+b的解析式;(2)求BOC的面积;(3)若点D在第二象限,DAB为等腰直角三角形,则点D的坐标为 20(6分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)求AOB的面积;21(6分)已知关于x的方程x2-6x+k0的两根分别是x1、x2.(1)求k的取值范围;(2

5、)当+ =3时,求k的值22(8分)如图是某货站传送货物的平面示意图. 原传送带与地面的夹角为,为了缩短货物传送距离,工人师傅欲增大传送带与地面的夹角,使其由改为,原传送带长为求:(1)新传送带的长度;(2)求的长度.23(8分)解一元二次方程:x22x3124(8分)如图,在ABC中,ADBC,BEAC,垂足分别为D,E,AD与BE相交于点F(1)求证:ACDBFD;(2)当tanABD=1,AC=3时,求BF的长25(10分)如图,网格的每个小正方形边长均为1,每个小正方形的顶点称为格点已知和的顶点都在格点上,线段的中点为(1)以点为旋转中心,分别画出把顺时针旋转,后的,;(2)利用变换后

6、所形成的图案,解答下列问题:直接写出四边形,四边形的形状;直接写出的值26(10分)解下列方程:(1);(2)参考答案一、选择题(每小题3分,共30分)1、A【分析】通过计算判别式的值可判断抛物线与轴的交点个数【详解】由二次函数,知抛物线与轴有二个公共点故选:A【点睛】本题考查了二次函数与一元二次方程之间的关系,抛物线与轴的交点个数取决于的值2、A【解析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A【点睛】本题主要考查了中心对称图形,熟练掌握

7、中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3、B【分析】根据二次函数的图象及性质与各项系数的关系即可判断A;根据抛物线的对称轴即可判断B;根据抛物线与x轴的交点个数即可判断C;根据当x1时y0,即可判断D.【详解】A、如图所示,抛物线经过原点,则c0,所以abc0,故不符合题意;B、如图所示,对称轴在直线x1的左边,则1,又a0,所以2ab0,故符合题意;C、如图所示,图象与x轴有2个交点,依据根的判别式可知b24ac0,故不符合题意;D、如图所示,当x1时y0,即ab+c0,但无法判定ab+c与1的大小

8、,故不符合题意故选:B【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.4、A【分析】由圆周角定理定理得出AOC,再由等腰三角形的性质得到答案.【详解】解:AOC与ADC分别是弧AC对的圆心角和圆周角,AOC =2ADC =66,在CAO中,AO=CO,ACO=OAC =,故选:A【点睛】本题考查了圆周角定理,此题难度不大,注意在同圆或等圆中,同弧或等弧所对圆周角等于它所对圆心角的一半,注意数形结合思想的应用5、B【分析】用四个数的和除以4即可.【详解】(60+70+40+30)4=2004=50.故选B.【点睛】本题重点考查了算术平均数的计算

9、,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、xn的算术平均数:=(x1+x2+xn).6、A【分析】根据无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数,结合选项进行判断即可【详解】A、是无理数,故本选项正确;B、=2,是有理数,故本选项错误;C、0,是有理数,故本选项错误;D、1,是有理数,故本选项错误;故选:A【点睛】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键7、D【解析】解:在平行四边形ABCD中,ABDC,则DFEBAE,DF:AB=DE:EBO为对角线的交点,DO=BO又E为OD的中点,DE=DB,则DE:EB=1:1,DF:AB=

10、1:1DC=AB,DF:DC=1:1,DF:FC=1:2故选D8、D【分析】由一次函数y=ax+a可知,一次函数的图象与x轴交于点(-1,0),即可排除A、B,然后根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象进行判断【详解】解:由一次函数可知,一次函数的图象与轴交于点,排除;当时,二次函数开口向上,一次函数经过一、三、四象限,当时,二次函数开口向下,一次函数经过二、三、四象限,排除;故选【点睛】本题主要考查一次函数和二次函数的图象,解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系9、C【分析】根据折叠的性质、等腰直角三角形的定义、相似三角

11、形的判定定理与性质、三角形的面积公式逐个判断即可得【详解】由折叠的性质得:又在中,即,则是等腰直角三角形,结论正确由结论可得:,则结论正确,则结论正确如图,过点E作由结论可得:是等腰直角三角形,由勾股定理得:,则结论错误综上,正确的结论有这3个故选:C【点睛】本题考查了折叠的性质、等腰直角三角形的定义、相似三角形的判定定理与性质等知识点,熟记并灵活运用各定理与性质是解题关键10、A【解析】从上面看得到的图形是A表示的图形,故选A二、填空题(每小题3分,共24分)11、 【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案【详

12、解】根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有1种结果,所以两次摸出的小球标号相同的概率是,故答案为【点睛】此题考查了树状图法与列表法求概率用到的知识点为:概率=所求情况数与总情况数之比错因分析 中等难度题.失分的原因有两个:(1)没有掌握放回型和不放回型概率计算的区别;(2)未找全标号相同的可能结果.12、1【解析】试题分析:先求出m22m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解解:由m22m1=0得m22m=1,所以,2m24m+3=2(m22m)+3=21+3=1故答案为1考点:代数式求值13、-1【分析】根据反比例函数的定义可求出

13、m的值【详解】解:函数是反比例函数解得,故答案为:-1【点睛】本题考查的知识点是反比例函数的定义,比较基础,易于掌握14、28【分析】先根据完全平方公式把变形,然后把,代入计算即可.【详解】,(a+b)2-2ab=36-8=28.故答案为:28.【点睛】本题考查了完全平方公式的变形求值,熟练掌握完全平方公式(ab)2=a22ab+b2是解答本题的关键.15、【分析】如图所示,由网格的特点易得CEFDBF,从而可得BF的长,易证BOFAOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,CEB=DBF=90,CFE=DFB,CE=DB=1,CEFD

14、BF,BF=EF=BE=,BFAD,BOFAOD,.故答案为:【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.16、6.【分析】作辅助线,根据反比例函数关系式得:SAOD=, SBOE=,再证明BOEAOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论【详解】如图,分别作BEx轴,ADx轴,垂足分别为点E、D,BEAD,BOEAOD,OA=AC,OD=DC,SAOD=SADC=SAOC,点A为函数y=(x0)的图象上一点,SAOD=,同理得:SBOE=,故答案为6.1

15、7、;【分析】利用根的判别式0列不等式求解即可【详解】解:抛物线与轴没有交点,即,解得:;故答案为:.【点睛】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键18、4【分析】设,在中,得.由勾股定理,再求AM,AB,证,.得,可得.【详解】如图所示,是的中点,.设,在中,.,.,.,可得,同理可证.,.故答案为:4【点睛】考核知识点:解直角三角形.构造直角三角形,利用三角形相关知识分析问题是关键.三、解答题(共66分)19、(1)yx+2;(2)3;(3)(2,5)或(5,3)或(,)【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可

16、求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1Ey轴于点E,过点D2作D2Fx轴于点F,可证明BED1AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标【详解】(1)点C(m,4)在正比例函数yx的图象上,m4,解得:m3,C(3,4),点C(3,4)、A(3,0)在一次函数ykx+b的图象上,解得,一次函数的解析式为y

17、x+2;(2)在yx+2中,令x0,解得y2,B(0,2),SBOC233;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1Ey轴于点E,过点D2作D2Fx轴于点F, 点D在第二象限,DAB是以AB为直角边的等腰直角三角形,ABBD1,D1BE+ABO90,ABO+BAO90,BAOEBD1,在BED1和AOB中,BED1AOB(AAS),BEAO3,D1EBO2,OE=OB+BE=2+3=5,点D1的坐标为(2,5);同理可得出:AFD2AOB,FABO2,D2FAO3,点D2的坐标为(5,3),当AB为斜边时,如图,D1

18、ABD2BA45,AD3B90,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x+15,设BD2的解析式为y=k2x+b2,将B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式为:y=x+2,解方程组得:,D3(,),综上可知点D的坐标为(2,5)或(5,3)或(,)故答案为:(2,5)或(5,3)或(,)【点睛】本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综合性较强,正确把握并能熟练运用相关知识是解题的关键注意分类思想的运用20、 (1

19、)y=;y=x2;(2)6【分析】(1)先把点A(-4,2)代入,求得“m”的值得到反比例函数的解析式,再把点B(n,-4)代入所得的反比例函数的解析式中求得“n”的值,从而可得点B的坐标,最后把A、B的坐标代入中列方程组解得“k、b”的值即可得到一次函数的解析式;(2)设直线AB和x轴交于点C,先求出点C的坐标,再由SAOB=SAOC+SBOC,即可计算出AOB的面积;【详解】()把点A(-4,2)代入得:,解得:,反比例函数的解析式为:.把点B(n,-4)代入得:,解得:,点B的坐标为(2,-4).把点A、B的坐标代入得:,解得,一次函数的解析式是;(2)如图,设AB与x轴的交点为点C,在

20、中由可得:,解得:.点C的坐标是(-2,0).OC=2,SAOB=SAOC+SBOC=.21、(1)k9;(2)2【分析】(1)根据判别式的意义得到=(-6)24k=364k0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=k,再利用=3得到=3,得到满足条件的k的值【详解】(1)方程有两根 =(-6)24k=364k0 k9;(2)由已知可得,x1+x2=6,x1x2=k+=3=3k=29当+=3时,k的值为2.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,也考查了根的判别式22、(1);(2)【分析】(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在RtACD中,求出AC的长(2)利用求出BD, 利用求出CD,故可求解.【详解】解:(1), 在中,在中,.(2)在中,在中,.【点睛】考查了坡度坡角问题,应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论