




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1如果2是方程x2-3x+k=0的一个根,则常数k的值为( )A2B1C-1D-22若将半径为的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( )ABCD3如图,五边形内接于,若,则的度数是( )ABCD4如图所示是二次函数y=ax2x+a21的图象,则a的值是( )Aa=1Ba=Ca=1Da
2、=1或a=15为坐标原点,点、分别在轴和轴上,的内切圆的半径长为( )ABCD6布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()ABCD7如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:;方程的两个根是,;当时,的取值范围是;当时,随增大而增大其中结论正确的个数是A1个B2个C3个D4个8如图,的半径为2,弦,点P为优弧AB上一动点,交直线PB于点C,则的最大面积是 AB1C2D9如图,点E是ABC的内心,AE的延长线和ABC的外接圆相交于点D,连接BD,CE,若CBD=32,则
3、BEC的大小为( )A64B120C122D12810下列图形中,既是中心对称图形又是轴对称图形的有几个()A4个B3个C2个D1个二、填空题(每小题3分,共24分)11直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为_12已知方程x2+mx3=0的一个根是1,则它的另一个根是_13如果将抛物线向上平移,使它经过点,那么所得新抛物线的表达式是_14在平面直角坐标系中,点P(4,1)关于点(2,0)中心对称的点的坐标是_.15如图,若,则_ 16已知A(-4,2),B(2,-4)是一次函数的图像和反比例函数图像的两个交点则关于的方程的解是_17如图,物理老师为同学们
4、演示单摆运动,单摆左右摆动中,在的位置时俯角,在的位置时俯角若,点比点高则从点摆动到点经过的路径长为_18如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水深为_米三、解答题(共66分)19(10分)如图,山顶有一塔AB,塔高33m计划在塔的正下方沿直线CD开通穿山隧道EF,从与E点相距80m的C处测得A、B的仰角分别为27、22,从与F点相距50m的D处测得A的仰角为45求隧道EF的长度(参考数据:tan220.40,tan270.51)20(6分)一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.21(6分)如图,四边形ABCD为菱形,
5、以AD为直径作O交AB于点F,连接DB交O于点H,E是BC上的一点,且BEBF,连接DE(1)求证:DE是O的切线(2)若BF2,BD2,求O的半径22(8分)如图,为测量一条河的宽度, 某学习小组在河南岸的点A测得河北岸的树C在点A的北偏东60方向,然后向东走10米到达B点,测得树C在点B的北偏东30方向,试根据学习小组的测量数据计算河宽.23(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,测得CBQ=60,求这条河的宽是多少米?(结果
6、精确到0.1米,参考数据1.414,1.732)24(8分)如图,在ABC中,AD是BC边上的中线,且AD=AC,DEBC,DE与AB相交于点E,EC与AD相交于点F(1)求证:ABCFCD;(2)过点A作AMBC于点M,求DE:AM的值;(3)若SFCD=5,BC=10,求DE的长25(10分)一个布袋中有红、黄、绿三种颜色的球各一个,从中先摸出一个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记录下它的颜色(1)试用树形图或列表法中的一种列举出这两次摸出球的颜色所有可能的结果;(2)求两次摸出球中至少有一个绿球的概率26(10分)解方程:2x2+3x1=1参考答案一、选择题(每小题
7、3分,共30分)1、A【分析】把x=1代入已知方程列出关于k的新方程,通过解方程来求k的值【详解】解:1是一元二次方程x1-3x+k=0的一个根,11-31+k=0,解得,k=1故选:A【点睛】本题考查的是一元二次方程的根即方程的解的定义一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立2、C【分析】易得圆锥的母线长为24cm,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为:,圆锥的底面半径为:.故答案为:C.【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解
8、题的关键.3、B【分析】利用圆内接四边形对角互补得到B+ADC=180,E+ACD=180,然后利用三角形内角和求出ADC +ACD=180-CAD,从而使问题得解.【详解】解:由题意:B+ADC=180,E+ACD=180B+ADC+E+ACD=360又ADC +ACD=180-CAD=180-35=145B+E+145=360B+E=故选:B【点睛】本题考查圆内接四边形对角互补和三角形内角和定理,掌握性质正确推理计算是本题的解题关键.4、C【解析】由图象得,此二次函数过原点(0,0),把点(0,0)代入函数解析式得a2-1=0,解得a=1;又因为此二次函数的开口向上,所以a0;所以a=1故
9、选C5、A【分析】先运用勾股定理求得的长,证得四边形为正方形,设半径为,利用切线长定理构建方程即可求解.【详解】如图,过内心C作CDAB、CEAO、CFBO,垂足分别为D、E、F,CEAO、CFBO,四边形为正方形,设半径为,则AB、AO、BO都是的切线,即:,解得:,故选:A【点睛】本题考查了切线长定理,勾股定理,证得四边形为正方形以及利用切线长定理构建方程是解题的关键.6、C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,P(一红一黄)=故选C7、C【分析】利用抛物线与轴的交点个数可对进行判断;由对称轴方程得到,然后根据时函数值为0可得到,则可对进行判断;利用抛物线的对
10、称性得到抛物线与轴的一个交点坐标为,则可对进行判断;根据抛物线在轴上方所对应的自变量的范围可对进行判断;根据二次函数的性质对进行判断【详解】解:抛物线与轴有2个交点,所以正确;,即,而时,即,所以错误;抛物线的对称轴为直线,而点关于直线的对称点的坐标为,方程的两个根是,所以正确;根据对称性,由图象知,当时,所以错误;抛物线的对称轴为直线,当时,随增大而增大,所以正确故选:【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左; 当与异号时
11、(即,对称轴在轴右;常数项决定抛物线与轴交点位置:抛物线与轴交于;抛物线与轴交点个数由决定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点8、B【分析】连接OA、OB,如图1,由可判断为等边三角形,则,根据圆周角定理得,由于,所以,因为,则要使的最大面积,点C到AB的距离要最大;由,可根据圆周角定理判断点C在上,如图2,于是当点C在半圆的中点时,点C到AB的距离最大,此时为等腰直角三角形,从而得到的最大面积【详解】解:连接OA、OB,如图1,为等边三角形,要使的最大面积,则点C到AB的距离最大,作的外接圆D,如图2,连接CD,点C在上,AB是的直径,当点C半圆的中点
12、时,点C到AB的距离最大,此时等腰直角三角形,ABCD,的最大面积为1故选B【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式9、C【分析】根据圆周角定理可求CAD=32,再根据三角形内心的定义可求BAC,再根据三角形内角和定理和三角形内心的定义可求EBC+ECB,再根据三角形内角和定理可求BEC的度数【详解】在O中,CBD=32,CAD=32,点E是ABC的内心,BAC=64,EBC+ECB=(180-64)2=58,BEC=180-58=122故选:C【点睛】本题考查了三角形的内心,圆周角定理,三角形内角和定理,关键是得到EBC+EC
13、B的度数10、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,是中心对称图形;第三个图形是轴对称图形,不是中心对称图形;第四个图形不是轴对称图形,是中心对称图形;既是中心对称图形又是轴对称图形的有1个,故选:D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合二、填空题(每小题3分,共24分)11、1【解析】连接OA,OB,OC利用小三角形的面积和等于大三角形的面积即可解答【详解】解:连接OA,OB,OC,则
14、点O到三边的距离就是AOC,BOC,AOB的高线,设到三边的距离是x,则三个三角形的面积的和是:ACx+BCx+ABx=ACBC,由题意可得:AC=4,BC=3,AB=54x+3x+5x=34解得:x=1故答案为:1.【点睛】本题中点到三边的距离就是直角三角形的内切圆的半径长,内切圆的半径= 12、-1【解析】设另一根为,则1= -1 ,解得,=1,故答案为113、【解析】试题解析:设平移后的抛物线解析式为y=x2+2x-1+b,把A(0,1)代入,得1=-1+b,解得b=4,则该函数解析式为y=x2+2x+1考点:二次函数图象与几何变换.14、(0,-1)【分析】在平面直角坐标系中画出图形,
15、根据已知条件列出方程并求解,从而确定点关于点中心对称的点的坐标【详解】解:连接并延长到点,使,设,过作轴于点,如图:在和中,故答案是:【点睛】本题考查了一个点关于某个点对称的点的坐标,关键在于掌握点的坐标的变化规律15、1【分析】可得出OABOCD,可求出CD的长【详解】解:ABCD,OABOCD, , ,若AB=8,CD=1故答案为:1【点睛】此题考查相似三角形的判定与性质,解题的关键是熟练掌握基本知识16、x1=-4,x1=1【分析】利用数形结合的思想解决问题即可【详解】A(4,1),B(1,4)是一次函数y=kx+b的图象和反比例函数y图象的两个交点,关于x的方程kx+b的解是x1=4,
16、x1=1故答案为:x1=4,x1=1【点睛】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是熟练掌握基本知识,属于中考常考题型17、【分析】如图,过点A作APOC于点P,过点B作BQOC于点Q,由题意可得AOP60,BOQ30,进而得AOB90,设OAOBx,分别在RtAOP和RtBOQ中,利用解直角三角形的知识用含x的代数式表示出OP和OQ,从而可得关于x的方程,解方程即可求出x,然后再利用弧长公式求解即可【详解】解:如图,过点A作APOC于点P,过点B作BQOC于点Q,EOA30,FOB60,且OCEF,AOP60,BOQ30,AOB90,设OAOBx,则在RtAOP中,OPOA
17、cosAOPx,在RtBOQ中,OQOBcosBOQx,由PQOQOP可得:xx7,解得:x7+7cm,则从点A摆动到点B经过的路径长为cm,故答案为:【点睛】本题考查了解直角三角形的应用和弧长公式的计算,属于常考题型,正确理解题意、熟练掌握解直角三角形的知识是解题的关键18、【详解】解:作出弧AB的中点D,连接OD,交AB于点C则ODABAC=AB=0.8m在直角OAC中,OC=0.6m则水深CD=OD-OC=1-0.6=0.4m【点睛】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,
18、常见辅助线是过圆心作弦的垂线三、解答题(共66分)19、隧道的长度约为.【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可【详解】解:如图,延长交于点,则.在中,.在中,.,.在中,.因此,隧道的长度约为.【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键20、【解析】试题分析:计算两个底面的菱形的面积加上侧面四个矩形的面积即可求得直四棱柱的表面积试题解析:俯视图是菱形,可求得底面菱形边长为2.5, 上、下底面积和为6212, 侧面积为2.54880直棱柱的表面积为21、(1)见解析;(2).
19、【分析】(1)证明DAFDCE,可得DFA=DEC,证出ADE=DEC=90,即ODDE,DE是O的切线(2)在RtADF和RtBDF中,可得AD2-(AD-BF)2=DB2-BF2,解方程可求出AD的长即可【详解】(1)证明:如图1,连接DF,四边形ABCD为菱形,ABBCCDDA,ADBC,DABC,BFBE,ABBFBCBE,即AFCE,DAFDCE(SAS), DFADEC,AD是O的直径,DFA90,DEC90ADBC,ADEDEC90,ODDE, OD是O的半径,DE是O的切线; (2)解:如图2, AD是O的直径,DFA90, DFB90,在RtADF和RtBDF中,DF2AD2
20、AF2,DF2BD2BF2,AD2AF2DB2BF2,AD2(ADBF)2DB2BF2,AD1 O的半径为【点睛】此题考查圆的综合,圆周角定理,菱形的性质,切线的判定,三角形全等的性质和判定,勾股定理等知识,解题关键是根据勾股定理列方程解决问题22、米【分析】如图(见解析),过点A作于点E,过B作于点F,设河宽为x米,则,在和中分别利用和建立x的等式,求解即可.【详解】过点A作于点E,过B作于点F设河宽为x米,则依题意得在中,即解得:则在中,即解得:(米)答:根据学习小组的测量数据计算出河宽为米.【点睛】本题考查了锐角三角函数中的正切的实际应用,依据题意构造出直角三角形是解题关键.23、17.3米.【解析】分析:过点C作于D,根据,得到 ,在中,解三角形即可得到河的宽度.详解:过点C作于D, 米,在中, 米,米答:这条河的宽是米点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.24、(1)证明见解析;(2);(3)【分析】(1)利用D是BC边上的中点,DEBC可以得到EBC=ECB,而由AD=AC可以得到ADC=ACD,再利用相似三角形的判定定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论