版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1把抛物线向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为( )ABCD2对于反比例函数,下列说法不正确的是A图象分布在第二、四象限B当时,随的增大而增大C图象经过点(1,-2)D若点,都在图象上,且,则3下列汽车标志图片中,既是轴对
2、称图形又是中心对称图形的是( )ABCD4抛物线的对称轴是( )A直线B直线C直线D直线5如图,PA是O的切线,切点为A,PO的延长线交O于点B,若P=40,则B的度数为 ( )A20B25C40D506分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到封闭图形就是莱洛三角形,如图,已知等边,则该莱洛三角形的面积为( )ABCD7已知二次函数yx26x+m(m是实数),当自变量任取x1,x2时,分别与之对应的函数值y1,y2满足y1y2,则x1,x2应满足的关系式是()Ax13x23Bx13x23C|x13|x23|D|x13|x23|8如图,点A、B、C均在O上,若AOC80,则ABC
3、的大小是( )A30B35C40D509某正多边形的一个外角的度数为 60,则这个正多边形的边数为( )A6B8C10D1210如图所示,ABC的顶点在正方形网格的格点上,则cosB=( )ABCD二、填空题(每小题3分,共24分)11如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,与交于点,连接,若,则_12已知点A(3,y1)、B(2,y2)都在抛物线y(x+1)2+2上,则y1与y2的大小关系是_13一个不透明的口袋中装有个红球和个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为_.14已知方程x23x5=0的两根为x1,x2,则x12+x2
4、2=_15把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系:h=20t-5t2,当小球达到最高点时,小球的运动时间为第_秒时16二次函数yax1+bx+c(a2)的部分图象如图,图象过点(1,2),对称轴为直线x1下列结论:4a+b2;9a+c3b;当x1时,y的值随x值的增大而增大;当函数值y2时,自变量x的取值范围是x1或x5;8a+7b+1c2其中正确的结论是_17如图,等腰直角的顶点在正方形的对角线上,所在的直线交于点,交于点,连接,. 下列结论中,正确的有_ (填序号). ;是的一个三等分点;. 18在一个不透明的袋子中有1个红球和3个白球,这
5、些球除颜色外都相同,在袋子中再放入个白球后,从袋子中随机摸出1个球,记录下颜色后放回袋子中并搅匀,经大量试验,发现摸到白球的频率稳定在0.95左右,则_.三、解答题(共66分)19(10分)如图,阳光下,小亮的身高如图中线段所示,他在地面上的影子如图中线段所示,线段表示旗杆的高,线段表示一堵高墙请你在图中画出旗杆在同一时刻阳光照射下形成的影子;如果小亮的身高,他的影子,旗杆的高,旗杆与高墙的距离,请求出旗杆的影子落在墙上的长度20(6分)(2011四川泸州,23,6分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的
6、小球,它们的标号分别为3,8,1从这3个口袋中各随机地取出1个小球(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率21(6分)新华商场销售某种冰箱,每台进货价为元,市场调研表明:当销售价为元时,平均每天能售出台,而当销售价每降低元时,平均每天就能多售出台.双“十一”期间,商场为了减少库存进行降价促销,如果在降价促销的同时还要保证这种冰箱的销售利润平均每天达到元,这种冰箱每台应降价多少元?22(8分)如图,直线经过上的点,直线与交于点和点,与交于点,连接,.已知,.(1)求证:直线是的切线;(2)求的长.23(8分
7、)某苗圃用花盆培育某种花苗,经过试验发现,每盆植人3株时,平均每株盈利3元在同样的栽培条件下,若每盆增加1株,平均每株盈利就减少0.5元,要使每盆的盈利为10元,且每盆植入株数尽可能少,每盆应植入多少株?24(8分)一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量(单位:件)与销售单价(单位:元/件)之间满足一次函数关系,如图所示(1)求与之间的函数解析式,并写出自变量的取值范围;(2)求每天的销售利润(单位:元)与销售单价之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)这名大学生计划
8、开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?25(10分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数a6576八年级(2)班学生参加球类活动人数情况扇形
9、统计图根据图中提供的信息,解答下列问题:(1)a ,b (2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率26(10分)如图直角坐标系中,为坐标原点,抛物线交轴于点,过作轴,交抛物线于点,连结点为抛物线上上方的一个点,连结,作垂足为,交于点(1)求的长;(2)当时,求点的坐标;(3)当面积是四边形面积的2倍时,求点的坐标参考答案一、选择题(每小题3分,共30分)1、A【解析】试题解析:抛物线的顶点坐
10、标为(0,0),把点(0,0)先向右平移1个单位,再向上平移1个单位后得到的点的坐标为(1,1),所以所得的抛物线的解析式为y=(x-1)2+1故选B考点:二次函数图象与几何变换2、D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解【详解】A. k=20,它的图象在第二、四象限,故本选项正确;B. k=20时,y随x的增大而增大,故本选项正确;C.,点(1,2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x10 x2,则y2y1,故本选项错误.故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.3、C
11、【解析】根据轴对称图形和中心对称图形的性质进行判断即可【详解】A.既不是轴对称图形,也不是中心对称图形,错误;B.是轴对称图形,不是中心对称图形,错误;C.既是轴对称图形,也是中心对称图形,正确;D.是轴对称图形,不是中心对称图形,错误;故答案为:C【点睛】本题考查了轴对称图形和中心对称图形的问题,掌握轴对称图形和中心对称图形的性质是解题的关键4、C【解析】用对称轴公式即可得出答案【详解】抛物线的对称轴,故选:C【点睛】本题考查了抛物线的对称轴,熟记对称轴公式是解题的关键.5、B【解析】连接OA,由切线的性质可得OAP=90,继而根据直角三角形两锐角互余可得AOP=50,再根据圆周角定理即可求
12、得答案.【详解】连接OA,如图:PA是O的切线,切点为A,OAAP,OAP=90,P=40,AOP=90-40=50,B=AOB=25,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.6、D【分析】莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积,代入已知数据计算即可【详解】解:如图所示,作ADBC交BC于点D,ABC是等边三角形,AB=AC=BC=2,BAC=ABC=ACB=60ADBC,BD=CD=1,AD=,莱洛三角形的面积为故答案为D【点睛】本题考查了不规则图形的面积的求解,能够得出“莱洛三角形的面积为三个扇形的面积
13、相加,再减去两个等边三角形的面积”是解题的关键7、D【分析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|x2-3|【详解】解:抛物线的对称轴为直线x=-=3,y1y2,点(x1,y1)比点(x2,y2)到直线x=3的距离要大,|x1-3|x2-3|故选D【点睛】本题考查二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式也考查了二次函数的性质8、C【分析】根据圆周角与圆心角的关键即可解答.【详解】AOC80,.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、A【分析】根据
14、外角和计算边数即可.【详解】正多边形的外角和是360,故选:A.【点睛】此题考查正多边形的性质,正多边形的外角和,熟记正多边形的特点即可正确解答.10、C【分析】先设小正方形的边长为1,再建构直角三角形,然后根据锐角三角函数的定义求解即可;【详解】解:如图,过A作ADCB于D,设小正方形的边长为1,则BD=AD=3,AB= cosB=;故选C.【点睛】本题主要考查了锐角三角函数的定义,勾股定理,掌握锐角三角函数的定义,勾股定理是解题的关键.二、填空题(每小题3分,共24分)11、【解析】过点C作CMDE于点M,过点E作ENAC于点N,先证BCDACE,求出AE的长及CAE=60,推出DAE=9
15、0,在RtDAE中利用勾股定理求出DE的长,进一步求出CD的长,分别在RtDCM和RtAEN中,求出MC和NE的长,再证MFCNFE,利用相似三角形对应边的比相等即可求出CF与EF的比值【详解】解:如图,过点作于点,过点作于点,在中,在与中,在中,在中,在中,在中,故答案为:【点睛】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比12、y1y1【分析】先求得函数的对称轴为,再判断、在对称轴右侧,从而判断出与的大小关系【详解】函数y=(x+1)1+1的对称轴为,、在对称轴右侧,抛物线开口向下,在对称轴右侧y随x的增大而减
16、小,且31,y1y1故答案为:y1y1【点睛】本题考查了待定系数法二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出答案是解题关键13、【分析】直接利用概率公式求解即可求得答案【详解】一个不透明的口袋中装有3个红球和9个黄球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是红球的概率为:故答案为:【点睛】本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比14、1【解析】试题解析:方程的两根为 故答案为1.点睛:一元二次方程的两个根分别为 15、1【解析】h=10t-5t1=-5(t-1)1+10,-50,函数有最大值,则当t=1时,球的高度最
17、高故答案为116、【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可【详解】解:抛物线过点(1,2),对称轴为直线x1x 1,与x轴的另一个交点为(5,2),即,4a+b2,故正确;当x3时,y9a3b+c2,即,9a+c3b,因此不正确;当x1时,y的值随x值的增大而增大,因此不正确;抛物线与x轴的两个交点为(1,2),(5,2),又a2,因此当函数值y2时,自变量x的取值范围是x1或x5,故正确;当x3时,y9a+3b+c2,当x4时,y16a+4b+c2,15a+7b+1c2,又a2,8a+7b+c2,故正确;综上所述,正确的结论有
18、:,故答案为:【点睛】本题主要考查二次函数图像性质,解决本题的关键是要熟练掌握二次函数图像性质.17、【分析】根据CBECDF即可判断;由CBECDF得出EBC=FDC=45进而得出DEF为直角三角形结合即可判断;判断BEN是否相似于BCE即可判断;根据BNEDME即可判断;作EHBC于点H得出EHCFDE结合tanHEC=tanDFE=2,设出线段比即可判断.【详解】CEF为等腰直角三角形CE=CF,ECF=90又ABCD为正方形BCD=90,BC=DC又BCD=BCE+ECDECF=ECD+DCFDCF=BCECBECDF(SAS)BE=DF,故正确;EBC=FDC=45故EDF=EDC+
19、FDC=90又E是BD的一个三等分点,故正确;即判定BENBCEECF为等腰直角三角形,BD为正方形对角线CFE=45=EDCCFE+MCF=EDC+DEMMCF=DEM然而题目并没有告诉M是EF的中点ECMMCFECMDEMBNE不能判定BENBCE不能得出进而不能得出,故错误;由题意可知BNEDME又BE=2DEBN=2DM,故正确;作EHBC于点HMCF=DEM又HCE=DCFHCE=DEM又EHC=FDE=90EHCFDEtanHEC=tanDFE=2可设EH=x,则CH=2xEC=sinBCE=,故错误;故答案为.【点睛】本题考查的是正方形综合,难度系数较大,涉及到了相似三角形的判定
20、与性质,勾股定理、等腰直角三角形的性质以及方程的思想等,需要熟练掌握相关基础知识.18、1【分析】根据用频率估计概率即可求出摸到白球的概率,然后利用概率公式列出方程即可求出x的值【详解】解:经大量试验,发现摸到白球的频率稳定在0.95左右摸到白球的概率为0.95解得:1经检验:1是原方程的解故答案为:1【点睛】此题考查的是用频率估计概率和根据概率求数量问题,掌握概率公式是解决此题的关键三、解答题(共66分)19、(1)作图见解析;(2)米. 【分析】(1)连接AC,过D点作AC的平行线即可;(2)过M作MNDE于N,利用相似三角形列出比例式求出旗杆的高度即可【详解】(1)如图所示,线段MG和G
21、E是旗杆在阳光下形成的影子(2)过点M作MNDE于点N.设旗杆的影子落在墙上的高度为x m,由题意得DMNACB,.又AB1.6 m,BC2.4 m,DNDENE(15x)m,MNEG16 m,解得x.答:旗杆的影子落在墙上的高度为m.【点睛】本题考查了相似三角形的知识,解题的关键是正确的构造直角三角形20、解:(1);(2)【分析】(1)根据题意画出树状图,根据树状图进行解答概率;(2)用列举法求概率【详解】解:(1)画树状图得一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,取出的3个小球的标号全是奇数的概率是:P(全是奇数)= (2)这些线段能构成三角形的有2、4、3,
22、7、4、8,7、4、1,7、5、3,7、5、8,7、5、1共6种情况,这些线段能构成三角形的概率为P(能构成三角形)= 【点睛】本题考查概率的计算,难度不大21、这种冰箱每台应降价元.【分析】根据题意,利用利润=每台的利润数量列出方程并解方程即可.【详解】解:设这种冰箱每台应降价元,根据题意得解得:,为了减少库存答:这种冰箱每台应降价元.【点睛】本题主要考查一元二次方程的实际应用,能够根据题意列出方程是解题的关键.22、(1)见解析;(2)【解析】(1)欲证明直线AB是 O的切线,只要证明OCAB即可(2)作ONDF于N,延长DF交AB于M,在RTCDM中,求出DM、CM即可解决问题【详解】(
23、1)证明:连结OC, OA=OB,AC=CB ,点C在O上,AB是O的切线, (2)作于N,延长DF交AB于M,DN=NF=3,在中,OD=5,DN=3, 又, FM/OC, 四边形OCMN是矩形, CM=ON=4,MN=OC=5 在中,.【点睛】本题考查了切线的判定,矩形的判定及性质,结合图形作合适的辅助线,想法证明OCAB时解题的关键.23、4株【分析】根据已知假设每盆花苗增加株,则每盆花苗有株,得出平均单株盈利为元,由题意得求出即可。【详解】解:设每盆花苗增加株,则每盆花苗有株,平均单株盈利为:元,由题意得:化简,整理,解这个方程,得,则,每盆植入株数尽可能少,盆应植4株答:每盆应植4株【点睛】此题考查了一元二次方程的应用,根据每盆花苗株数平均单株盈利总盈利得出方程是解题关键.24、(1)();(2),每件销售单价为100元时,每天的销售利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 约定股份合同范本
- 2024矿石物流承运协议文本
- 初中生活应对策略模板
- 2024海滨小城港口建设与发展
- 2024年BIM在工程造价管理中的应用培训课件
- 2024年夏威夷风情《认识钟表》教案设计
- 医疗用工合同范本
- 养羊合同范本
- 2024年教育创新:虚拟现实讲解三角形面积
- 二手房改造工程2024协议
- 《江西数学三年级上学期数学期中试卷》
- 《万维网安全新协议》课件 2024-2025学年人教版新教材初中信息技术七年级全一册
- 部编版历史高一上学期期中试卷与参考答案(2024-2025学年)
- 数据备份与恢复应急预案
- 情感表达 课件 2024-2025学年人教版(2024)初中美术七年级上册
- 印刷包装岗位招聘笔试题与参考答案(某大型国企)
- 变电站新建工程三通一平场地平整施工方案
- 黑龙江省哈尔滨市第九中学校2023-2024学年高三上学期期中数学试题含答案解析
- 陪护公司运营方案
- 预防高处坠落安全监理细则
- YS∕T 694.1-2017 变形铝及铝合金单位产品能源消耗限额 第1部分:铸造锭
评论
0/150
提交评论