2022-2023学年浙江杭州经济开发区六校联考数学九年级第一学期期末监测试题含解析_第1页
2022-2023学年浙江杭州经济开发区六校联考数学九年级第一学期期末监测试题含解析_第2页
2022-2023学年浙江杭州经济开发区六校联考数学九年级第一学期期末监测试题含解析_第3页
2022-2023学年浙江杭州经济开发区六校联考数学九年级第一学期期末监测试题含解析_第4页
2022-2023学年浙江杭州经济开发区六校联考数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1下列事件中,属于必然事件的是( )A掷一枚硬币,正面

2、朝上B抛出的篮球会下落C任意的三条线段可以组成三角形D同位角相等2下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是( )ABCD3某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A(7+x)(5+x)3=75B(7+x)(5+x)=375C(7+2x)(5+2x)3=75D(7+2x)(5+2x)=3754如图,在中,DEBC,( )A8B9C10D125已知二次函数,当时,该函数取最大值8.设该函数图象

3、与轴的一个交点的横坐标为,若,则a的取值范围是( )ABCD6已知点,是抛物线上的三点,则a,b,c的大小关系为( )ABCD7二次函数yx2的图象向左平移1个单位,再向下平移3个单位后,所得抛物线的函数表达式是()Ay+3By+3Cy3Dy38如图,点B,C,D在O上,若BCD30,则BOD的度数是( )A75B70C65D609若,则( )ABC1D10如图,把绕点逆时针旋转,得到,点恰好落在边上的点处,连接,则的度数为( )ABCD11下列图形:任取一个是中心对称图形的概率是 ( )ABCD112如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内

4、将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A(2,3)B(3,2)C(3,1)D(2,1)二、填空题(每题4分,共24分)13如图,在平面直角坐标系中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数,的图象上,则tanABO的值为_14如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是 15一组数据:2,5,3,1,6,则这组数据的中位数是_.16如图,ABC中,AB6,BC1如果动点D以每秒2个单位长度的速度,从点B出发沿边BA向点A运动,此时直线DEBC,交AC于点E记x秒时DE的长度为y,

5、写出y关于x的函数解析式_(不用写自变量取值范围)17抛物线y2x2+3x7与y轴的交点坐标为_18如图,在O中,弦AB,CD相交于点P,A30,APD65,则B_三、解答题(共78分)19(8分)一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率20(8分)如图,抛物线yx2+4x+m4(m为常数)与y轴交点为C,M(3,0)、N(0,2)分别是x轴、y轴上的点(1)求点C的坐标(用含m的代数式表示);(2)若抛物线与x

6、轴有两个交点A、B,是否存在这样的m,使得线段ABMN,若存在,求出m的值,若不存在,请说明理由;(3)若抛物线与线段MN有公共点,求m的取值范围21(8分)如图,直线y1=x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求y与x之间的函数关系式;(2)直接写出当x0时,不等式x+b的解集;(3)若点P在x轴上,连接AP把ABC的面积分成1:3两部分,求此时点P的坐标22(10分)如图,矩形纸片ABCD,将AMP和BPQ分别沿PM和PQ折叠(APAM),点A和点B都与点E重合;再将CQD沿DQ折叠,点C落在线段EQ上点F处(1)判断AMP,BPQ,

7、CQD和FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM1,sinDMF,求AB的长23(10分)某服装店用1440元购进一批服装,并以每件46元的价格全部售完由于服装畅销,服装店又用3240元,再次以比第一次进价多4元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?24(10分)如图,点A,P,B,C是O上的四个点,DAPPBA(1)求证:AD是O的切线;(2)若APCBPC60,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)在第(2)问的条件下,若AD2,PD1,求线段

8、AC的长25(12分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积26如图,已知抛物线yx2+bx+c与x轴相交于A(1,0),B(m,0)两点,与y轴相交于点C(0,3),抛物线的顶点为D(1)求B、D两点的坐标;(2)若P是直线BC下方抛物线上任意一点,过点P作PHx轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;(3)在第(2)问中,当PH+HF+CF取得最小值时,将OHF绕点O顺时针旋转60后得到OHF,过点F作OF的垂线与x轴交于点Q,点R

9、为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用随机事件以及必然事件的定义分别分析得出答案【详解】A、掷一枚硬币,正面朝上,是随机事件,故此选项错误;B、抛出的篮球会下落是必然事件,故此选项正确;C、任意三条线段可以组成一个三角形是随机事件,故此选项错误;D、同位角相等,属于随机事件,故此选项错误;故选:B【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发

10、生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、A【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目【详解】解:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图故选:A【点睛】本题考查统计图的选择,解决本题的关键是明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个

11、不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别3、D【分析】根据关键语句“矩形衬纸的面积为照片面积的3倍”列出方程求解即可【详解】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=375,故选:D【点睛】找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题4、D【分析】先由DEBC得出,再将已知数值代入即可求出AC【详解】DEBC,AD=5,BD=10,AB=5+10=15,AE=4,AC=12.故选:D.【点睛】本题考查平行线分线段成比例,熟练掌握

12、平行线分线段成比例定理是解题的关键.5、B【分析】利用函数与x轴的交点,求出横坐标,根据开口方向、以及列出不等式组,解不等式组即可.【详解】二次函数,当时,该函数取最大值8,当y=0时,故选:B【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.6、D【分析】将A,B,C三点坐标分别代入抛物线,然后化简计算即可.【详解】解:点,是抛物线上的三点,. 故选:D【点睛】本题考查二次函数图象上点的坐标,将点坐标分别代入关系式,正确运算,求出a,b,c是解题的关键7、D【分析】先求出原抛物线的顶点坐标,再根据平移,得到新抛物线的顶点坐标,即可得到答案.【详解】原抛物线的顶点为(0,0),

13、向左平移1个单位,再向下平移1个单位后,新抛物线的顶点为(1,1)新抛物线的解析式为: y1故选:D【点睛】本题主要考查二次函数图象的平移规律,通过平移得到新抛物线的顶点坐标,是解题的关键.8、D【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案【详解】BCD30,BOD2BCD23060故选:D【点睛】本题考查了圆的角度问题,掌握圆周角定理是解题的关键9、D【分析】令=k,则x=2k,y=3k,z=4k,再代入分式进行计算即可【详解】解:令=k,则x=2k,y=3k,z=4k,故选:D【点睛】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件

14、是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可10、D【分析】由旋转的性质可得AB=AB,BAB=50,由等腰三角形的性质可得ABB=ABB=65【详解】解:RtABC绕点A逆时针旋转50得到RtABC,AB=AB,BAB=50,故选:D【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键11、C【解析】本题考查概率的计算和中心对称图形的概念,根据中心对称图形的概念可以判定是中心对称图形,4个图形任取一个是中心对称的图形的概率为P=,因此本题正确选项是C.12、A【详解】解:线段AB的两个端点坐标分别为A(4,6),B(6

15、,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后得到线段CD,端点C的横坐标和纵坐标都变为A点的一半,端点C的坐标为:(-2,-3)故选A二、填空题(每题4分,共24分)13、【分析】根据反比例函数的几何意义可得直角三角形的面积;根据题意可得两个直角三角形相似,而相似比就是直角三角形AOB的两条直角边的比,从而得出答案.【详解】过点A、B分别作ADx轴,BEx轴,垂足为D、E,顶点A,B恰好分别落在函数,的图象上又AOB=90AOD=OBE则tanABO=故本题答案为:.【点睛】本题考查了反比例函数,相似三角形和三角函数的综合题型,连接辅助线是解题的关键.14、6米.【解析】试

16、题分析:在RtABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长试题解析:在RtABC中,BC=3米,tanA=1:;AC=BCtanA=3米,AB=米考点:解直角三角形的应用15、3【解析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.16、y3x+1【分析】由DEBC可得出ADEABC,再利用相似三角形的性质,可得出y关于x的函数解析式【详解

17、】DEBC,ADEABC,即,y3x+1故答案为:y3x+1【点睛】本题考查根据实际问题列函数关系式,利用相似三角形的性质得出是关键.17、 (0,7)【分析】根据题意得出,然后求出y的值,即可以得到与y轴的交点坐标【详解】令,得 ,故与y轴的交点坐标是:(0,7)故答案为:(0,7)【点睛】本题考查了抛物线与y轴的交点坐标问题,掌握与y轴的交点坐标的特点( )是解题的关键18、35【分析】先根据三角形外角性质求出C的度数,然后根据圆周角定理得到B的度数【详解】解:APDC+A,C653035,BC35故答案为35【点睛】本题主要考查的是三角形的外角性质以及圆周角定理,这是一道综合性几何题,掌

18、握三角形的外角性质以及圆周角定理是解题关键.三、解答题(共78分)19、.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色不同的情况,再利用概率公式即可求得答案【详解】画树状图得:共有9种等可能的结果,两次摸出的棋子颜色不同的有4种情况,两次摸出的棋子颜色不同的概率为:20、(1)(0,m4);(1)存在,m;(3)m1【分析】(1)由题意得:点C的坐标为:(0,m4);(1)存在,理由:令y=0,则x=1,则AB=1MN,即可求解;(3)联立抛物线与直线MN的表达式得:方程x1+4x+m4x1,即x1xm+1=0中0,且m41,即可求解【详解】(1)由题意

19、得:点C的坐标为:(0,m4);(1)存在,理由:令y=0,则x=1,则AB=1MN,解得:m;(3)M(3,0),N(0,1),直线MN的解析式为yx1抛物线与线段MN有公共点,则方程x1+4x+m4x1,即x1xm+1=0中0,且m41,()14(m+1)0,解得:m1【点睛】本题考查了二次函数综合运用,涉及到一次函数的性质、解不等式、一元二次方程等,其中(3),确定0,且m41是解答本题的难点21、(1);(2)x1;(3)P(,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x0时,不等式x+b

20、的解集为x1;(3)分两种情况进行讨论,AP把ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3=,或OP=4=,进而得出点P的坐标详解:(1)把A(1,m)代入y1=x+4,可得m=1+4=3,A(1,3),把A(1,3)代入双曲线y=,可得k=13=3,y与x之间的函数关系式为:y=;(2)A(1,3),当x0时,不等式x+b的解集为:x1;(3)y1=x+4,令y=0,则x=4,点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,b=,y2=x+,令y2=0,则x=3,即C(3,0),BC=7,AP把ABC的面积分成1:3两部分,CP=BC=

21、,或BP=BC=OP=3=,或OP=4=,P(,0)或(,0)点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点22、(1)AMPBPQCQD;(2)AB=6.【解析】根据题意得出三对相似三角形;设AP=x,有折叠关系可得:BP=AP=EP=x,AB=DC=2x,AM=1,根据AMPBPQ得:即,根据由AMPCQD得:即CQ=2,从而得出AD=BC=BQ+CQ=+2,MD=ADAM=+21=+1,根据RtFDM中DMF的正弦值得出x的值,从而求出AB的值.【详解】(1)有三对相似

22、三角形,即AMPBPQCQD(2)设AP=x,有折叠关系可得:BP=AP=EP=x AB=DC=2x AM=1由AMPBPQ得:即由AMPCQD得:即CQ=2AD=BC=BQ+CQ=+2 MD=ADAM=+21=+1又在RtFDM中,sinDMF=DF=DC=2x 解得:x=3或x=(不合题意,舍去)AB=2x=6.考点:相似三角形的应用、三角函数、折叠图形的性质.23、(1)45;(2)1【分析】(1)设该服装店第一次购买了此种服装x件,则第二次购进2x件,根据单价=总价数量结合第二次购进单价比第一次贵4元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据销售单价销售数量-两次

23、进货总价=利润,即可求出结论【详解】解:(1)设该服装店第一次购买了此种服装件,则第二次购进件,根据题意得:解得:经检验:是原方程的根,且符合题意答:该服装店第一次购买了此种服装45件(2)(元)答:两次出售服装共盈利1元【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算24、(1)证明见解析;(2)PA+PBPF+FCPC;(3)1+【分析】(1)欲证明AD是O的切线,只需推知ADAE即可;(2)首先在线段PC上截取PF=PB,连接BF,进而得出BPABFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用ADPBD

24、A,得出,求出BP的长,进而得出ADPCAP,则,则AP2=CPPD求出AP的长,即可得出答案【详解】(1)证明:先作O的直径AE,连接PE,AE是直径,APE90E+PAE90又DAPPBA,EPBA,DAPE,DAP+PAE90,即ADAE,AD是O的切线;(2)PA+PBPC,证明:在线段PC上截取PFPB,连接BF,PFPB,BPC60,PBF是等边三角形,PBBF,BFP60,BFC180PFB120,BPAAPC+BPC120,BPABFC,在BPA和BFC中,BPABFC(AAS),PAFC,ABCB,PA+PBPF+FCPC;(3)ADPBDA,AD2,PD1,BD4,AB2A

25、P,BPBDDP3,APD180BPA60,APDAPC,PADE,PCAE,PADPCA,ADPCAP,AP2CPPD,AP2(3+AP)1,解得:AP或AP(舍去),由(2)知ABC是等边三角形,AC=BCAB2AP1+【点睛】此题属于圆的综合题,涉及了圆周角定理,切线的判定与性质,相似三角形的判定与性质,全等三角形的判定与性质等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来25、(1)证明见解析;(2)24 【解析】试题分析:(1)首先证明ABC是等边三角形,进而得出AEC=90,四边形AECF是平行四边形,即可得出答案;(2)

26、利用勾股定理得出AE的长,进而求出菱形的面积试题解析:(1)四边形ABCD是菱形,AB=BC,又AB=AC,ABC是等边三角形,E是BC的中点,AEBC,AEC=90,E、F分别是BC、AD的中点,AF=AD,EC=BC,四边形ABCD是菱形,ADBC且AD=BC,AFEC且AF=EC,四边形AECF是平行四边形,又AEC=90,四边形AECF是矩形;(2)在RtABE中,AE=,所以,S菱形ABCD=63=18考点:1.菱形的性质;2.矩形的判定26、(1)B(3,0),D(1,4);(2);(3)存在,S的坐标为(3,0)或(1,2)或(1,2)或(1,)【分析】(1)将A(1,0)、C(0,3)代入yx2+bx+c,待定系数法即可求得抛物线的解析式,再配方即可得到顶点D的坐标,根据y0,可得点B的坐标;(2)根据BC的解析式和抛物线的解析式,设P(x,x22x3),则M(x,x3),表示PM的长,根据二次函数的最值可得:当x时,PM的最大值,此时P(,),进而确定F的位置:在x轴的负半轴了取一点K,使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论