版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,已知AB是O的直径,AD切O于点A,点C是的中点,则下列结论:OCAE;ECBC;DAEABE;ACOE,其中正确的有()A1个B2个C3个D4个2已
2、知,则下列各式中不正确的是( )ABCD3分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到封闭图形就是莱洛三角形,如图,已知等边,则该莱洛三角形的面积为( )ABCD4已知3x4y,则()ABCD以上都不对5矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是( )A24B33C56D426如图,二次函数的图象经过点,下列说法正确的是( )ABCD图象的对称轴是直线7已知抛物线y=x28x+c的顶点在x轴上,则c的值是( )A16B-4C4D88某商场对上周女装的销售情况进行了统计,如下表,经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( )颜色黄色
3、绿色白色紫色红色数量(件)10018022080520A平均数B中位数C众数D方差9已知二次函数y ax2 2ax 3a2 3(其中x是自变量),当x 2时,y随x的增大而增大,且3 x 0时,y的最大值为9,则a的值为( )A1或B或CD110如图,在中,点是边上的一个动点,以为直径的圆交于点,若线段长度的最小值是4,则的面积为( )A32B36C40D4811在RtABC中,C90,BC4,sinA,则AC()A3B4C5D612己知是一元二次方程的一个根,则的值为( )A1B1或2C1D0二、填空题(每题4分,共24分)13已知,关于原点对称,则_14如图,在平面直角坐标系中,第二象限内
4、的点P是反比例函数y(k0)图象上的一点,过点P作PAx轴于点A,点B为AO的中点若PAB的面积为3,则k的值为_15如果点A(1,4)、B(m,4)在抛物线ya(x1)2+h上,那么m的值为_16如果,那么_17已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_cm1(结果保留)18把二次函数变形为的形式,则_三、解答题(共78分)19(8分)如图,在RtABC中,C=90,过AC上一点D作DEAB于E,已知AB=10cm,AC=8cm,BE=6cm,求DE20(8分)如图,与交于点,过点,交与点,交与点F,.(1)求证:(2)若,求证:21(8分)如图,在平面直角坐标系中,的三
5、个顶点坐标分别为、(1)点关于坐标原点对称的点的坐标为_;(2)将绕着点顺时针旋转,画出旋转后得到的;(3)在(2)中,求边所扫过区域的面积是多少?(结果保留)(4)若、三点的横坐标都加3,纵坐标不变,图形的位置发生怎样的变化?22(10分)感知:如图,在等腰直角三角形ABC中,ACB90,BCm,将边AB绕点B顺时针旋转90得到线段BD,过点D作DECB交CB的延长线于点E,连接CD(1)求证:ACBBED;(2)BCD的面积为 (用含m的式子表示)拓展:如图,在一般的RtABC,ACB90,BCm,将边AB绕点B顺时针旋转90得到线段BD,连接CD,用含m的式子表示BCD的面积,并说明理由
6、应用:如图,在等腰ABC中,ABAC,BC8,将边AB绕点B顺时针旋转90得到线段BD,连接CD,则BCD的面积为 ;若BCm,则BCD的面积为 (用含m的式子表示)23(10分)如图,在RtABC中,ACB=90,B=30,将ABC绕点C按顺时针方向旋转n度后,得到DEC,点D刚好落在AB边上(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由24(10分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求下列事件的概率(1)两次都摸到红球;(2)第一次摸到红球,第二次摸到绿球25(12分)如图,抛物线与轴交于,两
7、点(点位于点的左侧),与轴交于点已知的面积是(1)求的值;(2)在内是否存在一点,使得点到点、点和点的距离相等,若存在,请求出点的坐标;若不存在,请说明理由;(3)如图,是抛物线上一点,为射线上一点,且、两点均在第三象限内,、是位于直线同侧的不同两点,若点到轴的距离为,的面积为,且,求点的坐标26如图,是的直径,且,点为外一点,且,分别切于点、两点与的延长线交于点(1)求证:;(2)填空:当_时,四边形是正方形当_时,为等边三角形参考答案一、选择题(每题4分,共48分)1、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周
8、角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到DAE=ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号【详解】解:C为的中点,即,OCBE,BCEC,选项正确;设AE与CO交于F,BFO90,AB为圆O的直径,AEBE,即BEA90,BFOBEA,OCAE,选项正确;AD为圆的切线,DAB90,即DAE+EAB90,EAB+ABE90,DAEABE,选项正确;点E不一定为中点,故E不一定是中点,选项错误,则结论成立的是,故选:C【点睛】此
9、题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键2、C【分析】依据比例的基本性质,将比例式化为等积式,即可得出结论【详解】A. 由可得,变形正确,不合题意;B. 由可得,变形正确,不合题意;C. 由可得,变形不正确,符合题意;D. 由可得,变形正确,不合题意故选C【点睛】本题考查了比例的性质,此题比较简单,解题的关键是掌握比例的变形3、D【分析】莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积,代入已知数据计算即可【详解】解:如图所示,作ADBC交BC于点D,ABC是等边三角形,AB=AC=BC=2,BAC=ABC=ACB=60ADB
10、C,BD=CD=1,AD=,莱洛三角形的面积为故答案为D【点睛】本题考查了不规则图形的面积的求解,能够得出“莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积”是解题的关键4、A【分析】根据3x4y得出xy,再代入要求的式子进行计算即可【详解】3x4y,xy,;故选:A【点睛】此题考查了比例的性质,熟练掌握比例的性质即两内项之积等于两外项之积是解题的关键5、D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解【详解】解:324322241842(cm2);故选:D【点睛】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的
11、长是解题的关键6、D【分析】根据二次函数的图像与性质即可求解.【详解】由图象可知图象与y轴交点位于y轴正半轴,故c0. A选项错误;函数图象与x轴有两个交点,所以0,B选项错误;观察图象可知x1时y=abc0,所以abc0,C选项错误;根据图象与x轴交点可知,对称轴是(1,0).(5,0)两点的中垂线,x3即为函数对称轴,D选项正确;故选D【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像.7、A【分析】顶点在x轴上,所以顶点的纵坐标是0.据此作答.【详解】二次函数y=-8x+c的顶点的横坐标为x=-=-=4,顶点在x轴上,顶点的坐标是(4,0),把(4,0)代入y=-8
12、x+c中,得:16-32+c=0,解得:c=16,故答案为A【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.8、C【解析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大【详解】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数故选:C【点睛】反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用9、D【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由3 x
13、 0时时,y的最大值为9,可得x=-3时,y=9,即可求出a【详解】二次函数y ax2 2ax 3a2 3 (其中x是自变量),对称轴是直线,当x2时,y随x的增大而增大,a0,3 x 0时,y的最大值为9,又a0,对称轴是直线,在x=-3时,y的最大值为9,x=-3时, ,a=1,或a=2(不合题意舍去).故选D.【点睛】此题考查二次函数的性质,解题关键在于掌握二次函数的基本性质即可解答.10、D【分析】连接BQ,证得点Q在以BC为直径的O上,当点O、Q、A共线时,AQ最小,在中,利用勾股定理构建方程求得O的半径R,即可解决问题.【详解】如图,连接BQ,PB是直径,BQP=90,BQC=90
14、,点Q在以BC为直径的O上,当点O、Q、A共线时,AQ最小,设O的半径为R,在中,即,解得:,故选:D【点睛】本题考查了圆周角定理,勾股定理,三角形面积公式解决本题的关键是确定Q点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题11、A【分析】先根据正弦的定义得到sinA=,则可计算出AB=5,然后利用勾股定理计算AC的长【详解】如图,在RtACB中,sinA,AB5,AC1故选:A【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形12、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即把x=2代入方程求
15、解可得m的值【详解】把x=2代入方程(m2)x2+4xm2=0得到(m2)+4m2=0,解得:m=2或m=2m20,m=2故选:C【点睛】本题考查了一元二次方程的解的定义,解题的关键是理解一元二次方程解的定义,属于基础题型二、填空题(每题4分,共24分)13、1【分析】根据点(x,y)关于原点对称的点是(-x,-y)列出方程,解出a,b的值代入计算即可【详解】解:,关于原点对称,解得,故答案为:1【点睛】本题考查了关于原点对称的点的坐标的特点,熟知点(x,y)关于原点对称的点是(-x,-y)是解题的关键14、-1【分析】根据反比例函数系数k的几何意义得出的面积,再根据线段中点的性质可知,最后根
16、据双曲线所在的象限即可求出k的值.【详解】如图,连接OP点B为AO的中点,的面积为3由反比例函数的几何意义得则,即又由反比例函数图象的性质可知则解得故答案为:.【点睛】本题考查了反比例函数的图象与性质、线段的中点,熟记反比例函数的性质是解题关键.15、1【分析】根据函数值相等两点关于对称轴对称,可得答案【详解】由点A(1,4)、B(m,4)在抛物线y=a(x1)2+h上,得:(1,4)与(m,4)关于对称轴x=1对称,m1=1(1),解得:m=1故答案为1【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m1=1(1)是解题的关键16、 【解析】,根据和比性质,
17、得=,故答案为.17、15【分析】圆锥的侧面积底面周长母线长1【详解】解:底面圆的半径为3cm,则底面周长6cm,侧面面积6515cm1故答案为:15【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键18、【分析】利用配方法将二次函数变成顶点式即可.【详解】,h=2,k=-9,即h+k=2-9=-7.故答案为:-7.【点睛】本题考查二次函数顶点式的性质,关键在于将一般式转换为顶点式.三、解答题(共78分)19、3cm【分析】先根据勾股定理求出BC的长,再根据题意证明ABCADE,得到,代入即可求解【详解】解:C=90,AB=10,AC=8 BC=6BE=6 AE=4DEAB C=
18、90=AED又A=A ABCADE cm【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定方法20、(1)见解析;(2)见解析【分析】(1)根据两边对应成比例且夹角相等的两个三角形相似可证AOBCOD,从而可证A=D;(2)证明AOEDOF, BOECOF,然后根据相似三角形的对应边成比例解答即可.【详解】证明:(1),,AOB=COD,AOBCOD,A=D;(2)A=D,ABCD,AOEDOF, BOECOF,, 【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,灵活运用相似三
19、角形的性质进行几何证明21、(1)(1,-1);(2)见详解;(3);(4)图形的位置是向右平移了3个单位.【分析】(1)先求出点B的坐标,再点关于坐标原点对称的点的坐标即可;(2)根据将绕着点顺时针旋转的坐标特征即可得到A1、B1、C1的坐标,然后描点连线即可;(3) 利用扇形面积公式进行计算可得线段AC旋转时扫过的面积(4) 、三点的横坐标都加3,即图形的位置是向右平移了3个单位.【详解】解:(1)点B的坐标是 ,点关于坐标原点对称的点的坐标为(1,-1);(2)如图所示,即为所求作的图形;(3),;(4)、三点的横坐标都加3,纵坐标不变,图形的位置是向右平移了3个单位.【点睛】本题考查了
20、利用旋转变换作图以及扇形面积的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键22、感知:(1)详见解析;(1)m1;拓展: m1,理由详见解析;应用:16, m1【解析】感知:(1)由题意可得CACB,AABC25,由旋转的性质可得BABD,ABD90,可得DBEABC,即可证ACBBED;(1)由ACBBED,可得BCDEm,根据三角形面积求法可求BCD的面积;拓展:作DGCB交CB的延长线于G,可证ACBBGD,可得BCDGm,根据三角形面积求法可求BCD的面积;应用:过点A作ANBC于N,过点D作DMBC的延长线于点M,由等腰三角形的性质可以得出BNBC,由条件可以得出AFB
21、BED就可以得出BNDM,由三角形的面积公式就可以得出结论【详解】感知:证明:(1)ABC是等腰直角三角形,CACBm,AABC25,由旋转的性质可知,BABD,ABD90,DBE25,在ACB和DEB中,ACBBED(AAS)(1)ACBBEDDEBCmSBCDBCEDm1,故答案为 m1,拓展:作DGCB交CB的延长线于G,ABD90,ABC+DBG90,又ABC+A90,ADBG,在ACB和BGD中,ACBBGD(AAS),BCDGmSBCDBCDGm1,应用:作ANBC于N,DMBC交CB的延长线于M,ANBM90,BNBC2NAB+ABN90ABD90,ABN+DBM90,NABMB
22、D线段BD是由线段AB旋转得到的,ABBD在AFB和BED中,ANBBMD(AAS),BNDMBC2SBCDBCDM8216,若BCm,则BNDMBCm,SBCDBCDMmmm1故答案为16,m1【点睛】本题考查了等腰三角形的性质,全等三角形的判定(AAS),全等三角形的性质,直角三角形的性质,面积计算,熟练掌握这些知识点是本题解题的关键.23、 (1)60;(2)四边形ACFD是菱形理由见解析.【分析】(1)利用旋转的性质得出AC=CD,进而得出ADC是等边三角形,即可得出ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案【详解】解:(1)在
23、RtABC中,ACB=90,B=30,将ABC绕点C按顺时针方向旋转n度后,得到DEC,AC=DC,A=60,DCE=ACB=90,ADC是等边三角形,ACD=60,n的值是60;(2)四边形ACFD是菱形;理由:DCE=ACB=90,F是DE的中点,FC=DF=FE,CDF=A=60,DFC是等边三角形,DF=DC=FC,ADC是等边三角形,AD=AC=DC,AD=AC=FC=DF,四边形ACFD是菱形24、(1);(2)【分析】(1)列表得出所有等可能的情况数,找出两次摸到红球的情况数,即可确定出所求的概率;(2)列表得出所有等可能的情况数,找出第一次摸到红球,第二次摸到绿球的情况数,即可
24、确定出所求的概率【详解】(1)列表如下:红绿红(红,红)(绿,红)绿(红,绿)(绿,绿)所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=;(2)由(1)得第一次摸到红球,第二次摸到绿球只有一种,故其概率为【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=25、(1)-3;(2)存在点,使得点到点、点和点的距离相等;(3)坐标为【分析】(1)令,求出x的值即可求出A、B的坐标,令x=0,求出y的值即可求出点C的坐标,从而求出AB和OC,然后根据三角形的面积公式列出方程即可求出的值;(2)由题意,点即为外接圆圆心,即点为三边中垂线的交点,利用A、C两点的坐标即可求出、的中点坐标,然后根据等腰三角形的性质即可得出线段的垂直平分线过原点,从而求出线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度养老院护理服务与设施租赁合同3篇
- 2025年度土地流转与农业废弃物综合利用合同3篇
- 2025年度绿色能源补贴合同范本2篇
- 2025年度汽车4S店店面租赁及品牌运营合同3篇
- 二零二四医院护士劳动合同样本:医院护理团队人员劳动合同3篇
- 2025年度债务重组与财产分配税务筹划合同3篇
- 二零二五版高端别墅租赁管理服务合同2篇
- 2024知名品牌授权使用及销售代理合同
- 2024食堂人员安全生产责任与聘用合同3篇
- 2024贴砖劳务分包合同施工质量监督协议3篇
- 2025年湖北武汉工程大学招聘6人历年高频重点提升(共500题)附带答案详解
- 【数 学】2024-2025学年北师大版数学七年级上册期末能力提升卷
- GB/T 26846-2024电动自行车用电动机和控制器的引出线及接插件
- 辽宁省沈阳市皇姑区2024-2025学年九年级上学期期末考试语文试题(含答案)
- 2024年国家工作人员学法用法考试题库及参考答案
- 妊娠咳嗽的临床特征
- 国家公务员考试(面试)试题及解答参考(2024年)
- 《阻燃材料与技术》课件 第6讲 阻燃纤维及织物
- 2024年金融理财-担保公司考试近5年真题附答案
- 泰山产业领军人才申报书
- 高中语文古代文学课件:先秦文学
评论
0/150
提交评论