医疗企业制程能力分析报告培训课件_第1页
医疗企业制程能力分析报告培训课件_第2页
医疗企业制程能力分析报告培训课件_第3页
医疗企业制程能力分析报告培训课件_第4页
医疗企业制程能力分析报告培训课件_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、医疗企业制程能力分析报告医疗企业制程能力分析报告目 錄一、工序質量控制二、過程能力的概念、度量、分析評價三、過程能力指數與不合格品率四、正態性檢驗五、過程能力調查六、正態總體假設檢驗七、制程能力電腦分析2医疗企业制程能力分析报告目 錄一、工序質量控制2医疗企业制程能力分析报告一、工序質量控制 通常要解決兩個問題: 一是過程狀態的穩定,即過程處於統計控制狀態 二是過程具有生產合格品的保證能力二、過程能力的概念、度量、分析評價 1. 過程能力概念 (1). 6M 或稱 5MIE 構成了過程的六大要, 其 綜合效果加以量化時,就構成過程能力 3医疗企业制程能力分析报告一、工序質量控制3医疗企业制程能

2、力分析报告(2). 過程控制系統圖人機料法環量測資源組合轉換中間產品半成品成品零部件行動統計方法 制程能力量度2. 4医疗企业制程能力分析报告(2). 過程控制系統圖人資源組合轉換中間產品行動統計方(3). 六大因素將各自對產品品質產生影響, 產品/ 服務量化的結果綜合反應出: 2 變量概率分布的方差標準偏差 過程能力大小的度量基礎 變量之平均值 5医疗企业制程能力分析报告(3). 六大因素將各自對產品品質產生影響, 產品/ 5(4). 正確理解 、 及 X、S 試 比 較 樣 本 與 群 數SamplePopulationStatisticX averageS Sample stand de

3、viationParameter Mean Standard deviation - 6医疗企业制程能力分析报告(4). 正確理解 、 及 X、S 試 比 較 (5). 正態分布之形成過程 Sample Population 標準測量: 少多 群數X X X X X X X 7医疗企业制程能力分析报告(5). 正態分布之形成過程X X (6). 正態分布概率密度函數: 當收集到的數據為計量數據時,質量特性 X 會 是一個連續性隨機變量,變量的分布便是正態 分布,符合下式:概率密度函數:其中: = 3.14159 e = 2.71828Xi - Z = (Z)-3 - 2 2 3 68.26%9

4、5.44%99.73% (Z) = e = 0.3989 e1Z22Z22Z22 2 Z22Z22Z228医疗企业制程能力分析报告(6). 正態分布概率密度函數:概率密度函數:其中: (7). 6 應用 概率正態分布之性質在 3 範圍之概率 為0.9973 , 幾乎包含了全部的質量特性值. 所以: 6 範圍被認為是產品品質正常波動的合理的最大幅度,它代表了一個過程所能達到的質量水平,所以過程能力一般用 6 來表示. 越大 過程質量波動越大,過程能力越低 越小 過程能力越高9医疗企业制程能力分析报告(7). 6 應用9医疗企业制程能力分析报告 ?想一想: 6 之範圍,對我們會有怎樣的意義,可以用

5、來作品質設計嗎?10医疗企业制程能力分析报告 ?想一想: 6 之範圍,對我們會有怎樣的意義,可以用來作小結: 所謂過程能力,就是過程處於統計控制狀態下,加工品質正常波動的經濟幅度,通常用品質特性值分布的 6 倍標準偏差表示,記為6 試問: 過程本身與公差有無關係?11医疗企业制程能力分析报告小結: 11医疗企业制程能力分析报告 2. 過程能力指數 比較評價 : 工序自身實際存在的能力( 質量水平) 6 ; 給定的技術要求 T ( 公差) 比值 衡量過程能力, 滿足工藝技術要求程度指標 CpCp = = TU - TL6 T6 TLTU分布中心與公差中心重合12医疗企业制程能力分析报告 2. 過

6、程能力指數Cp = ?想一想: 如果T 的中心( 公差中心 ), 與6 之中心不重合時, CP會是一種怎樣的值, 不重合時CP該如何考慮呢?TLTUT/2M 分布中心與公差中心不重合 偏移量 : =M-公差中心 M 與分佈中心 之差值 ? 偏移是過程中存在甚麼因素的影響?CP 與不良率有甚麼關係?13医疗企业制程能力分析报告 ?想一想: 如果T 的中心( 公差中心 ), 與6 之中三、過程能力指數與不合格品率假定XTL為合格品, 那麼XTL時為不合格品, 如圖示 - AreaT= 1.000陰影部份的面積即為不合格品, 查表可求出- TL Area1 = ( ) TL 即 PL = P( X

7、TU 時為不合格品- Area1= 1.000Area2 Area1 + - TU陰影部份的面積查表可求:Area1 = AreaT - Area2 = 1- ( ) TU 不合格品率 PU = P( X TU ) = 1 - ( ) TU 由上可知: TU 的不同值 ,會有不同的不合格品率PU,因此,定義過程能力指數CPU = TU 3 + 15医疗企业制程能力分析报告假設X TU 為合格品,那麼 X TU 時為不合格品假設特性 X 規格為 ( TL , TU ), 當特性值X 在(TL , TU ) 為合格, 那麼 X TU 即為不合格品 如圖示:Area3- - Area2Area1TL

8、 TU陰影部份即為不合格品之率:P = PL + PU = P( X TU )a). 當公布中心 與公差中心 M 重合時 M = PL = PU16医疗企业制程能力分析报告假設特性 X 規格為 ( TL , TU ), 當特性值X b). 當M 則: P( X TU ) 不合格品主要出現在 質量上限T- TL M TUArea+ 17医疗企业制程能力分析报告b). 當M 則: P( X 則: P( X TU ) 不合格品主要出現在 達不到規格之下限部份所以可定義過程能力指數CPK = min (CPU , CPL) = min ( , )TU 3 TL 3 = min ( , ) M +T/2

9、 3 M +T/2 - 3 = + min ( , ) = - M 3 M - 3 T6 T6 M-3 T6 = - =( 1-K ) Cp ( K = )KT/23 M - T/ 2K 即為偏移系數T- TL M TUArea18医疗企业制程能力分析报告c). 當M 則: P( X . 單邊規格: a. 規定上限X TU 時為合格 Cp = (TU-X) / 3S b. 規定下限 X TL 時為合格 Cp = ( X - TL) / 3S19医疗企业制程能力分析报告小結: 19医疗企业制程能力分析报告 2. 雙邊規格 X TL , TU 為合格 用 =M -XT/ 2K = = T/ 2M

10、-CPK = ( 1 K ) CP20医疗企业制程能力分析报告 2. 雙邊規格 X TL , TU 為合格 用 重點說明: 討論過程能力指數,一定在如下兩個假定下 進行的: 1.過程是穩定的,即過程的輔出特性X 服從 正態分布 N ( , 2 ) 2. 產品的規格範圍( 下限規格TL和上限規格 TU ) 能準確反映顧客 ( 下道工序的工人、 使用者 ) 的要求. 如果不知道分布是否是正態分布, 則應進行 正態性檢驗來驗證過程分布是否服從正態 分布21医疗企业制程能力分析报告 重點說明:21医疗企业制程能力分析报告四、正態性檢驗 Normality Tests Shapiro Wilkes Te

11、st觀察 Shapiro Wilk Prob W Value 如果: P Value ( 以 Prob w 表示) Prob W 是大於0.05, 則可以認為是正態分布, 如果: Prob . 設置原假設Ho 如Ho: o ; 則Ho 的 備擇假設H1:. 設定顯著水平27医疗企业制程能力分析报告六、正態總體假設檢驗27医疗企业制程能力分析报告医疗企业制程能力分析报告培训课件 根據這個原理可以得到一個推理方法,即如果在某假設成立的條件下,事件A是一個小概率事件,現在只進行一次試驗,如果在這一次試驗中,事件A就發生了,則自然有理由認為原來的假設不成立 所以,假設檢驗的核心問題是選取適當的統計量,

12、並找出其在假設成立的前提下的概率分布,對于給定的顯著性水平提出檢驗標準 小概率事件發生的臨界值,進而對所提出的假設進行判斷. 適常選擇= 0.01 , 0.05 , 0.10等,一般情況下若小概率事件的發生可能導致重大損失時,應選取數值小的值,反之可以選大一些, 適常取0.0529医疗企业制程能力分析报告 根據這個原理可以得到一個推理方法,即如果在某3. 求臨界值在給定的顯著性水平下, 通過查表求得臨界值4. 判斷將統計量與臨界值比較,作出拒絕原假設Ho或接受原假設Ho的判斷,當拒絕原假設Ho時,一般應接受備擇假設H1.5. 結論, 做出顯著性判斷的結論30医疗企业制程能力分析报告3. 求臨界

13、值30医疗企业制程能力分析报告2. 正態總體假設檢驗: t 檢驗和U 檢驗設總體XN(, 2) ; X1,X2, X n 是總體 X 的隨機樣本o 和o 是已知數值則 U = t = X oo n X oS n = o 已知 , 用 U 檢驗 未知 , 用 t 檢驗31医疗企业制程能力分析报告2. 正態總體假設檢驗: t 檢驗和U 檢驗則 U = 情形假 設基本假設Ho之否定域HoH1= o已知未知1= o o | U |U | t | t, n-12 o o | U |U 2 |t t 2, n-13o u則拒絕原假設Ho 現| u | = 3.90 1.96 ,故應拒絕原假設Ho結論: 當

14、日產品厚度已發生顯著變化,必須從工藝上爭取糾正措施,使生產產品的分布中心恢復到原有水平.如果已知兩個母體分別服從正態分布 N (1 ; o)和(2 ; o),它們有和同的標準偏差 o, 現需檢驗這兩個母體分布中心1 和2是否存顯著結果,仍可用U檢驗,= X1 X2 o 1 1n1 n234医疗企业制程能力分析报告查表(求臨界值)= X1 X2 o 1 1(2). t 檢驗舉例標準偏差未知時, 應采用 t 檢驗方法解決問題如: 某一彈簧壓縮到某一高度后之彈力服從正態分布,某一規格的標準彈力為2.7N,從某日生產的產品中抽取9個樣品檢驗彈力分別為No.123456789X2.802.852.722

15、.782.602.802.682.632.75試用 t 檢驗的方法檢驗當日生產的彈力是否正常.設置原假設 Ho Ho : = o 當日產品彈力正常35医疗企业制程能力分析报告(2). t 檢驗舉例No.123456789X2.802.求統計量 均值 X 偏差 S X = 2.734 S = 0.084 計算統計量時,由於總體標準偏差未知, 用樣本標準偏差 S代替. X oS / n t = = 1.23查表( 求臨界值 ) 若= o 為真實時, t 變量服從自由度為 n 1 的分布 本例自由度 f = n 1 = 8 設= 0.05 查t 分布表 查得臨界值為:f = 8t = 0.05 = 2.31 36医疗企业制程能力分析报告求統計量X o t = 判斷 若 | t | t 時判斷接受

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论