版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A3m
2、BmCmD4m2在“践行生态文明,你我一起行动”主题有奖竞赛活动中,班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是( )ABCD3要得到函数y2(x1)23的图像,可以将函数y2x2的图像( )A向左平移1个单位长度,再向上平移3个单位长度B向左平移1个单位长度,再向下平移3个单位长度C向右平移1个单位长度,再向上平移3个单位长度D向右平移1个单位长度,再向下平移3个单位长度4下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )ABCD5如图,在直角坐标系中,有两点A(6,3)、B
3、(6,0)以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )A(2,1)B(2,0)C(3,3)D(3,1)6如图所示,AB是O的直径,AM、BN是O的两条切线,D、C分别在AM、BN上,DC切O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:O的半径为 ,ODBE ,PB=, tanCEP=其中正确结论有( )A1个B2个C3个D4个7如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上的一点,连接AF分别交BD,DE于点M,N,且AFDE,连接PN,则下列
4、结论中:;tanEAF=;正确的是()ABCD8正方形具有而菱形不具有的性质是()A对角线互相平分B对角线相等C对角线平分一组对角D对角线互相垂直9如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰RtABC,使BAC=90,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()ABCD10在ABC中,AB=AC=13,BC=24,则tanB等于( )ABCD11如图,在中,点在边上,且,过点作,交边于点,将沿着折叠,得,与边分别交于点若的面积为,则四边形的面积是( )ABCD12如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()ABCD
5、二、填空题(每题4分,共24分)13下列投影或利用投影现象中,_是平行投影,_是中心投影 (填序号)14如图,矩形ABCD的边AB上有一点E,ED,EC的中点分别是G,H,AD4 cm,DC1 cm,则EGH的面积是_cm115点关于原点对称的点为_16某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60 x1.5x2,该型号飞机着陆后滑行 m才能停下来17五角星是我们生活中常见的一种图形,如图五角星中,点C,D分别为线段AB的右侧和左侧的黄金分割点,已知黄金比为,且AB2,则图中五边形CDEFG的周长为_18如果两个相似三角形的相似比为1:4,那么它们
6、的面积比为_三、解答题(共78分)19(8分)若抛物线yax2+bx3的对称轴为直线x1,且该抛物线经过点(3,0)(1)求该抛物线对应的函数表达式(2)当2x2时,则函数值y的取值范围为 (3)若方程ax2+bx3n有实数根,则n的取值范围为 20(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”,小颖和
7、小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率21(8分)如图,在中,对角线AC与BD相交于点O,求证:四边形ABCD是菱形22(10分)如图,已知双曲线与直线交于点和点(1)求双曲线的解析式;(2)直接写出不等式的解集23(10分)如图,已知点D在ABC的外部,ADBC,点E在边AB上,ABADBCAE(1)求证:BACAED;(2)在边AC取一点F,如果AFED,求证:24(10分)如图,的直径垂直于弦,垂足为,为延长线上一点,且(1)求证:为的切线;(2)若,求的半径25(12分)在RtABC中,ACB=90,A
8、C=BC=3,点D是斜边AB上一动点(点D与点A、B不重合),连接CD,将CD绕点C顺时针旋转90得到CE,连接AE,DE(1)求ADE的周长的最小值;(2)若CD=4,求AE的长度26如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子(2)如果小明的身高AB1.6m,他的影子长AC1.4m,且他到路灯的距离AD2.1m,求灯泡的高参考答案一、选择题(每题4分,共48分)1、C【详解】如图,由题意得:AP=3,AB=6, 在圆锥侧面展开图中 故小猫经过的最
9、短距离是故选C.2、B【解析】直接利用概率公式计算得出答案【详解】共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,参赛同学抽到每一类别的可能性相同,小宇参赛时抽到“生态知识”的概率是:故选B【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键3、C【解析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到【详解】解:y2(x1)23的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y2(x1)23故选:C【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点
10、顶点坐标4、B【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可【详解】A.不是中心对称图形,故错误;B.是中心对称图形,故正确;C.不是中心对称图形,故错误;D.不是中心对称图形,故错误;故选:B【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键5、A【分析】根据位似变换的性质可知,ODCOBA,相似比是,根据已知数据可以求出点C的坐标【详解】由题意得,ODCOBA,相似比是,又OB=6,AB=3,OD=2,CD=1,点C的坐标为:(2,1),故选A【点睛】本题考查的是位似变换,掌握位似变换与相似
11、的关系是解题的关键,注意位似比与相似比的关系的应用6、C【解析】试题解析:作DKBC于K,连接OEAD、BC是切线,DAB=ABK=DKB=90,四边形ABKD是矩形,DK=AB,AD=BK=4,CD是切线,DA=DE,CE=CB=9,在RTDKC中,DC=DE+CE=13,CK=BCBK=5,DK=12,AB=DK=12,O半径为1故错误,DA=DE,OA=OE,OD垂直平分AE,同理OC垂直平分BE,AQ=QE,AO=OB,ODBE,故正确在RTOBC中,PB=,故正确,CE=CB,CEB=CBE,tanCEP=tanCBP=,故正确,正确,故选C7、A【解析】利用正方形的性质,得出DAN
12、EDC,CDAD,CADF即可判定ADFDCE(ASA),再证明ABMFDM,即可解答;根据题意可知:AFDEAE,再根据三角函数即可得出;作PHAN于H利用平行线的性质求出AH,即可解答;利用相似三角形的判定定理,即可解答【详解】解:正方形ABCD的边长为2,点E是BC的中点,ABBCCDAD2,ABCCADF90,CEBE1,AFDE,DAF+ADNADN+CDE90,DANEDC,在ADF与DCE中, ,ADFDCE(ASA),DFCE1,ABDF,ABMFDM,SABM4SFDM;故正确;根据题意可知:AFDEAE, ADDFAFDN,DN ,EN,AN,tanEAF,故正确,作PHA
13、N于HBEAD,PA,PHEN,AH,PH= PN,故正确,PNDN,DPNPDE,PMN与DPE不相似,故错误故选:A【点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质8、B【分析】根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B【点睛】考点:1.菱形的性质;2.正方形的性质9、A【分析】根据题意作出合适的辅助线,可以先证明ADC和AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的【详解】作ADx轴,作CDAD于点D,如图所示,
14、由已知可得,OB=x,OA=1,AOB=90,BAC=90,AB=AC,点C的纵坐标是y, ADx轴,DAO+AOD=180, DAO=90, OAB+BAD=BAD+DAC=90, OAB=DAC,在OAB和DAC中, OABDAC(AAS), OB=CD, CD=x,点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1, y=x+1(x0)考点:动点问题的函数图象10、B【解析】如图,等腰ABC中,AB=AC=13,BC=24,过A作ADBC于D,则BD=12,在RtABD中,AB=13,BD=12,则,AD=,故tanB=.故选B【点睛】考查的是锐角三角函数的定义、等腰三角形的性质
15、及勾股定理11、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出SADE=,由平行线的性质可得,可得SFGM=2, 再利用S四边形DEGF= SDEM- SFGM,即可得到答案【详解】解:如图,连接AM,交DE于点H,交BC于点P,DEBC,的面积为SADE=32=设AH=5a,HP=3a沿着折叠AH=HM=5a,SADE=SDEM=PM=2a,DEBCSFGM=2S四边形DEGF= SDEM- SFGM=-2=故选:B【点睛】本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键12、D【解析】根据主视图是从物体正面看所得到的图形判断即可【详解】
16、A.主视图是圆;B.主视图是矩形;C.主视图是矩形;D.主视图是三角形故选:D【点睛】本题主要考查了几何体的三种视图,掌握定义是关键注意所有的看到的棱都应表现在三视图中二、填空题(每题4分,共24分)13、 【分析】根据中心投影的性质,找到是灯光的光源即可判断出中心投影;再利用平行光下的投影属于平行投影可判断出平行投影【详解】解:都是灯光下的投影,属于中心投影;因为太阳光属于平行光线,所以日晷属于平行投影;中是平行光线下的投影,属于平行投影,故答案为:;【点睛】此题主要考查了中心投影和平行投影的性质,解题的关键是根据平行投影和中心投影的区别进行解答即可14、2【分析】由题意利用中位线的性质得出
17、,进而根据相似三角形性质得出,利用三角形面积公式以及矩形性质分析计算得出EGH的面积【详解】解:ED,EC的中点分别是G,H,GH是EDC的中位线,,AD4 cm,DC2 cm,,故答案为:2【点睛】本题考查相似三角形的性质以及矩形性质,熟练掌握相似三角形的面积比是线段比的平方比以及中位线的性质和三角形面积公式以及矩形性质是解题的关键15、【分析】根据平面直角坐标系中,关于原点的对称点的坐标变化规律,即可得到答案.【详解】平面直角坐标系中,关于原点的对称点的横纵坐标分别互为相反数,点关于原点对称点的坐标为故答案是:.【点睛】本题主要考查平面直角坐标系中,关于原点的对称点的坐标变化规律,掌握关于
18、原点的对称点的横纵坐标分别互为相反数,是解题的关键.16、1【解析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值1.50,函数有最大值,即飞机着陆后滑行1米才能停止17、【分析】根据点C,D分别为线段AB的右侧和左侧的黄金分割点,可得AC=BD=AB,BC=AB,再根据CD=BD-BC求出CD的长度,然后乘以5即可求解【详解】点C,D分别为线段AB的右侧和左侧的黄金分割点,AC=BD=AB=,BC=AB,CD=BDBC=()()=24,五边形CDEFG的周长=5(24)=101故答案为:101【点睛】本题考查了黄金分割的定义:线段上一点把线段分为较长线段和较短线段,若较长线
19、段是较短线段和整个线段的比例中项,则这个点叫这条线段的黄金分割点18、1:1【解析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得【详解】两个相似三角形的相似比为1:4,它们的面积比为1:1故答案是:1:1【点睛】考查对相似三角形性质的理解(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比三、解答题(共78分)19、(1)yx22x3;(2)1y5;(3)n1【分析】(1)由对称轴x1可得b=-2a,再将点(3,0)代入抛物线解析式得到9a+3b-3=0,然后列二元一次方程组求出
20、a、b即可;(2)用配方法可得到y(x1)21,则当x=1时,y有最小值-1,而当x=-2时,y=5,即可完成解答;(3)利用直线y=n与抛物线y(x1)21有交点的坐标就是方程ax2+bx-3=n有实数解,再根据根的判别式列不式、解不等式即可.【详解】解:(1)抛物线的对称轴为直线x1, 1,即b2a,抛物线经过点(3,0)9a+3b30,把b2a代入得9a6a30,解得a1,b2,抛物线解析式为yx22x3;(2)yx22x3(x1)21,x1时,y有最小值1,当x2时,y1+135,当2x2时,则函数值y的取值范围为1y5;(3)当直线yn与抛物线y(x1)21有交点时,方程ax2+bx
21、3n有实数根,n1【点睛】本题考查了二次函数的性质及其与二元一次方程的关系,把求二次函数图像与x轴的交点坐标问题转化为解关于x的一元二次方程是解答本题的关键.20、(1)0.1;(2)小颖的说法是错误的,理由见解析(3)列表见详解;【分析】(1)根据频率等于频数除以总数,即可分别求出“3点朝上”的频率和“5点朝上”的频率(2)频率不等于概率,只能估算概率,故小颖的说法不对,事件发生具有随机性,故得知小红的说法也不对(3)列表,找出点数之和是3的倍数的结果,除以总的结果,即可解决【详解】解:(1)“3点朝上”的频率:660=0.1“5点朝上”的频率:2060=(2)小颖的说法是错误的,因为“5点
22、朝上”的频率最大并不能说明5点朝上的概率最大,频率不等于概率;小红的说法是错误的,因为事件发生具有随机性,故“点朝上”的次数不一定是100次(3)列表如下:共有36种情况,点数之和为3的倍数的情况有12种故P(点数之和为3的倍数)=【点睛】本题主要考查了频率的公式、频率与概率的关系以及列表法和树状图法求概率,能够熟练其概念以及准确的列表是解决本题的关键21、见解析【分析】根据平行四边形的性质得到AO和BO,再根据AB,利用勾股定理的逆定理得到AOB=90,从而判定菱形【详解】解:四边形ABCD是平行四边形,AC=16,BD=12,AO=8,BO=6,AB=10,AO2+BO2=AB2,AOB=
23、90,即ACBD,平行四边形ABCD是菱形【点睛】本题考查了菱形的判定,勾股定理的逆定理,解题的关键是证明AOB=9022、(1);(2)或【分析】(1)将点A坐标代入双曲线解析式即可得出k的值,从而求出双曲线的解析式;(2)求出B点坐标,利用图象即可得解【详解】解:(1)双曲线经过点,.双曲线的解析式为(2)由双曲线解析式可得出B(-4,-1),结合图象可得出,不等式的解集是:或【点睛】本题考查的知识点是反比例函数与一次函数的交点问题,解题的关键是从图象中得出相关信息23、见解析【解析】(1)欲证明BACAED,只要证明CBADAE即可;(2)由DAECBA,可得,再证明四边形ADEF是平行
24、四边形,推出DEAF,即可解决问题;【详解】证明(1)ADBC,BDAE,ABADBCAE,CBADAE,BACAED(2)由(1)得DAECBADC,AFED,AFEC,EFBC,ADBC,EFAD,BACAED,DEAC,四边形ADEF是平行四边形,DEAF,【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型24、(1)见解析;(2)【分析】(1)连接OB,根据圆周角定理证得CBD=90,然后根据等边对等角以及等量代换,证得OBF=90即可证得;(2)首先利用垂径定理求得BE的长,根据勾股定理求得圆的半径【详解】(1)连接OBCD是直径,CBD=90,又O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度私人车位买卖及车位保险合同
- 2025年度池塘水域资源综合利用开发合同
- 跨学科合作中的学生团队表达能力
- 客户声音分析在提升服务质量中的作用
- 高校科研实验室与教学实验室的融合发展
- 家庭教育中孩子的综合素质培养
- 线上线下融合模式下体育用品店的运营策略研究
- 融合艺术元素的语文学习兴趣激发
- 青少年网络成瘾与心理干预的研究进展
- 2025年甘肃工业职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 关于合同知识的全面解读
- 绘本创作方案
- 《童年的水墨画》的说课课件
- 地铁保洁服务投标方案(技术标)
- 2023年河南省新乡市凤泉区事业单位招聘53人高频考点题库(共500题含答案解析)模拟练习试卷
- 2023年小升初简历下载
- 广府文化的奇葩
- 公路工程标准施工招标文件(2018年版)解析
- 七年级地理下册期末试卷(人教版)
- 第八节 元代散曲
- 《自动化专业导论》课程教学大纲
评论
0/150
提交评论