版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1已知如图中,点为,的角平分线的交点,点为延长线上的一点,且,若,则的度数是( )ABCD2已知反比例函数y,下列结论中不正确的是()A图象经过点(1,1)B图象在第一、三象限C当x1时,y1D当x0时,y随着x的增大而减小3点P(3,5)关于原点对称的点的坐标是()A(3,5)B(3,5)C(5,3)D(3,5)
2、4如图,以点为位似中心,把放大为原图形的2倍得到,则下列说法错误的是( )ABC,三点在同一直线上D5已知点都在反比例函数的图像上,那么( )ABCD的大小无法确定6若反比例函数y=的图象经过点(2,6),则k的值为()A12B12C3D37二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )ABCD8某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为()A50cmB50cmC100cmD80cm9如图,AB是O的弦,半径OCAB,D为圆周上一点,若的度数为
3、50,则ADC的度数为 ()A20B25C30D5010如图,在菱形ABOC中,A=60,它的一个顶点C在反比例函数的图像上,若菱形的边长为4,则k值为( )ABCD11随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具某新能源汽车4s店的汽车销量自2018年起逐月增加据统计,该店第一季度的汽车销量就达244辆,其中1月份销售汽车64辆若该店1月份到3月份新能源汽车销售量的月平均增长率为x,则下列方程正确的是()A64(1+x)2244B64(1+2x)244C64+64(1+x)+64(1+x)2244D64+64(1+x)+64(1+2x)24412已知ABCDE
4、F,A=60,E=40,则F的度数为( )A40B60C80D100二、填空题(每题4分,共24分)13在这三个数中,任选两个数的积作为的值,使反例函数的图象在第二、四象限的概率是_14二次函数的最大值是_15在中,则C的度数为_16已知点与点关于原点对称,则_17如图,在直角坐标系中,已知点,对述续作旋转变换,依次得、,则的直角顶点的坐标为_18已知,则_三、解答题(共78分)19(8分)如图,在平面直角坐标系中,抛物线过点,动点P在线段上以每秒2个单位长度的速度由点运动到点停止,设运动时间为,过点作轴的垂线,交直线于点, 交抛物线于点连接,是线段的中点,将线段绕点逆时针旋转得线段(1)求抛
5、物线的解析式;(2)连接,当为何值时,面积有最大值,最大值是多少?(3)当为何值时,点落在抛物线上20(8分)为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会某公司研发生产一种新型智能环保节能灯,成本为每件40元市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家
6、给予公司补贴m(m40)元在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是 (直接写出结果)21(8分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.22(10分)如图,以等腰ABC的一腰AC为直径作O,交底边BC于点D,过点D作腰AB的垂线,垂足为E,交AC的延长线于点F(1)求证:EF是O的切线;(2)证明:CADCDF;(3)若F30,AD,求O的面积23(10分)已知:PA=,PB4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧(1)如图,当APB45时,求AB及PD的长;(2)当APB变化,且其它条件不变时,
7、求PD的最大值,及相应APB的大小24(10分)(1)解方程:. (2)如图,四点都在上,为直径,四边形是平行四边形,求的度数. 25(12分)如图,在ABC中,CDAB,垂足为点D若AB12,CD6,tanA,求sinBcosB的值26如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,测得CBQ=60,求这条河的宽是多少米?(结果精确到0.1米,参考数据1.414,1.732)参考答案一、选择题(每题4分,共48分)1、C【分析】连接BO,证O是
8、ABC的内心,证BAODAO,得D=ABO,根据三角形外角性质得ACO=BCO=D+COD=2D,即ABC=ACO=BCO,再推出OAD+D=180-138=42,得BAC+ACO=84,根据三角形内角和定理可得结果.【详解】连接BO,由已知可得因为AO,CO平分BAC和BCA所以O是ABC的内心所以ABO=CBO=ABC因为AD=AB,OA=OA,BAO=DAO所以BAODAO所以D=ABO所以ABC=2ABO=2D因为OC=CD所以D=COD所以ACO=BCO=D+COD=2D所以ABC=ACO=BCO因为AOD=138所以OAD+D=180-138=42所以2(OAD+D)=84即BAC
9、+ACO=84所以ABC+BCO=180-(BAC+ACO)=180-84=96所以ABC=96=48故选:C【点睛】考核知识点:三角形的内心.利用全等三角形性质和角平分线性质和三角形内外角定理求解是关键.2、C【分析】根据反比例函数的性质,利用排除法求解【详解】A、x1,y1,图象经过点(1,1),正确;B、k10;,图象在第一、三象限,正确;C、当x1时,y1,图象在第一象限内y随x的增大而减小,当x1时y1,错误;D、k10,图象在第三象限内y随x的增大而减小,正确.故选:C【点睛】此题考查反比例函数的性质,正确掌握函数的增减性,k值与图象所在象限的关系.3、D【分析】根据关于原点对称的
10、点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标【详解】解:点P(3,5)关于原点对称的点的坐标是(-3,-5),故选D【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律4、B【分析】直接利用位似图形的性质进而得出答案【详解】以点O为位似中心,把ABC放大为原图形的2倍得到ABC,ABCABC,A,O,A三点在同一直线上,ACAC,无法得到CO:CA=1:2,故选:B【点睛】此题考查了位似变换,正确掌握位似图形的性质是解题关键5、C【分析】由反比例函数的比例系数为正,那么图象过第一,三象限,根据反比例函数的增减性可得m和n的大小关系
11、【详解】解:点A(m,1)和B(n,3)在反比例函数(k0)的图象上,13,mn故选:C【点睛】此题考查了反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数的比例系数得到函数图象所在的象限,用到的知识点为:k0,图象的两个分支分布在第一,三象限,在每一个象限内,y随x的增大而减小6、A【解析】试题分析:反比例函数的图象经过点(2,6),解得k=1故选A考点:反比例函数图象上点的坐标特征7、D【分析】根据抛物线的图像,判断出的符号,从而确定一次函数、反比例函数的图像的位置即可【详解】解:由抛物线的图像可知:横坐标为1的点,即在第四象限,因此;双曲线的图像分布在二、四象限;由于抛物线开口
12、向上,对称轴为直线,;抛物线与轴有两个交点,;直线经过一、二、四象限;故选:【点睛】本题主要考查二次函数,一次函数以及反比例函数的图象与解析式的系数关系,熟练掌握函数解析式的系数对图像的影响,是解题的关键8、A【分析】连接OA作弦心距,就可以构造成直角三角形设出半径弦心距也可以得到,利用勾股定理就可以求出了【详解】解:如图,过点O作于点C,边接AO,在中,解,得AO=50故选:A【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键9、B【分析】利用圆心角的度数等于它所对的弧的度数得到BOC=50,利用垂径定理得到,然后根据圆周角定理计算ADC的度数【详解】的
13、度数为50,BOC=50,半径OCAB,ADC=BOC=25故选B【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了垂径定理和圆周角定理10、C【分析】由题意根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值.【详解】解:在菱形ABOC中,A=60,菱形边长为4,OC=4,COB=60,C的横轴坐标为,C的纵轴坐标为,点C的坐标为(-2,),顶点C在反比例函数的图象上,=,得k=,故选:C.【点睛】本题考查反比例函数图像以及菱形的性质,解答本题的关键是明确题意,求出点C的坐标
14、,利用反比例函数的性质解答11、C【分析】设该店1月份到3月份新能源汽车销售量的月平均增长率为x,等量关系为:1月份的销售量+1月份的销售量(1+增长率)+1月份的销售量(1+增长率)2=第一季度的销售量,把相关数值代入求解即可【详解】设该店1月份到3月份新能源汽车销售量的月平均增长率为x,根据题意列方程:64+64(1+x)+64(1+x)21故选:C【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系,列出方程12、C【分析】根据全等三角形对应角相等可得B=E=40,F=C,然后利用三角形内角和定理计算出C的度数,进而可得答案【详解】解:ABCDEF
15、,B=E=40,F=C,A=60,C=180-60-40=80,F=80,故选:C【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等二、填空题(每题4分,共24分)13、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出 k为负值的情况数,再利用概率公式即可求得答案【详解】解:画树状图得:,共有6种等可能的结果,任选两个数的积作为k的值,k为负数的有4种,反比例函数的图象在第二、四象限的概率是:故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或
16、两步以上完成的事件注意概率=所求情况数与总情况数之比14、1【分析】二次函数的顶点式在x=h时有最值,a0时有最小值,a0时有最大值,题中函数 ,故其在时有最大值.【详解】解:,有最大值,当时,有最大值1故答案为1【点睛】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.15、【分析】先根据平方、绝对值的非负性求得、,再利用锐角三角函数确定、的度数,最后根据直角三角形内角和求得【详解】解:故答案是:【点睛】本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键16、1【分析】直接利用关于原点对称点的性质得出a,b的值,即可得出
17、答案【详解】解:点P(a,-6)与点Q(-5,3b)关于原点对称,a=5,3b=6,解得:b=2,故a+b=1故答案为:1【点睛】此题考查关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键17、 (1200,0)【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由时直角顶点的坐标可以求出来,从而可以解答本题【详解】由题意可得,OAB旋转三次和原来的相对位置一样,点A(-3,0)、B(0,4),OA=3,OB=4,BOA=90,旋转到第三次时的直角顶点的坐标为:(12,0),3013=1001旋转第301次的直角顶点的坐标为:(1200,0),故答案
18、为:(1200,0)【点睛】本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键18、【分析】由已知可得x、y的关系,然后代入所求式子计算即可.【详解】解:,.故答案为:.【点睛】本题考查了比例的性质和代数式求值,属于基本题型,掌握求解的方法是关键.三、解答题(共78分)19、(1);(2)当时,面积的最大值为16;(3)【分析】(1)用待定系数法即可求出抛物线的解析式;(2)先用待定系数法求出直线AB的解析式,然后根据点P的坐标表示出Q,D的坐标,进一步表示出QD的长度,从而
19、利用面积公式表示出的面积,最后利用二次函数的性质求最大值即可;(3)分别过点作轴的垂线,垂足分别为,首先证明,得到,然后得到点N的坐标,将点N的坐标代入抛物线的解析式中,即可求出t的值,注意t的取值范围【详解】(1)抛物线过点,解得所以抛物线的解析式为: ;(2)设直线AB的解析式为 ,将代入解析式中得, 解得 直线AB解析式为 ,当时,面积的最大值为16 ; (3)分别过点作轴的垂线,垂足分别为, 在和中, ,当点落在抛物线上时,.,, 【点睛】本题主要考查二次函数与几何综合,掌握待定系数法,全等三角形的判定及性质,二次函数的性质是解题的关键20、(1)yx+70,自变量x的取值范围1000
20、 x2500;见解析;(2)每天的最大销售利润是22500元;见解析;(3)20m1【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)构建二次函数,利用二次函数的性质即可解决问题【详解】解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为ykx+b,把与代入ykx+b得,解得:,每件销售单价y(元)与每天的销售量为x(件)的函数关系式为yx+70,当y45时,x+7045,解得:x2500,自变量x的取值范围1000 x2500;(2)根据题意得,P,0,P有最大值,当x1500时,P随x的增大而增大,当x1500时,P的最大
21、值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P,对称轴为x,1000 x2500,x的取值范围在对称轴的左侧时P随x的增大而增大,2500,解得:m20,m的取值范围是:20m1故答案为:20m1【点睛】本题主要考查的是一次函数与二次函数的综合应用,关键是根据题意得到一次函数表达式,然后根据条件得到关于利润与销量的二次函数表达式,进而利用二次函数的性质求最值21、米【分析】根据坡度的定义可得,求出AB,再根据勾股定理求【详解】坡顶离地面的高度为20米,坡面的坡度为即, 米由勾股定理得答:坡面的长度为米.【点睛】考核知识点:解直角三角形应用.把问题转化为解直角三角形是
22、关键.22、(1)见解析;(2)见解析;(3)【分析】(1)连接OD,AD,证点D是BC的中点,由三角形中位线定理证ODAB,可推出ODF90,即可得到结论;(2)由ODOC得到ODCOCD,由CAD+OCD90和CDF+ODC90即可推出CADCDF;(3)由F30得到DOC60,推出DAC30,在RtADC中,由锐角三角函数可求出AC的长,推出O的半径,即可求出O的面积【详解】解:(1)证明:如图,连接OD,AD,AC是直径,ADC90,即ADBC,又ABAC,BDCD,又AOCO,ODAB,又FEAB,FEOD,EF是O的切线;(2)ODOC,ODCOCD,ADCODF90,CAD+OC
23、D90,CDF+ODC90,CADCDF;(3)在RtODF中,F30,DOC903060,OAOD,OADODADOC30,在RtADC中,AC 2,r1,SO12,O的面积为【点睛】本题考查了圆的有关性质,切线的判定与性质,解直角三角形等,解题关键是能够根据题意作出适当的辅助线,并熟练掌握解直角三角形的方法23、(1),;(2)的最大值为1【分析】(1)作辅助线,过点A作AEPB于点E,在RtPAE中,已知APE,AP的值,根据三角函数可将AE,PE的值求出,由PB的值,可求BE的值,在RtABE中,根据勾股定理可将AB的值求出;求PD的值有两种解法,解法一:可将PAD绕点A顺时针旋转90
24、得到PAB,可得PADPAB,求PD长即为求PB的长,在RtAPP中,可将PP的值求出,在RtPPB中,根据勾股定理可将PB的值求出;解法二:过点P作AB的平行线,与DA的延长线交于F,交PB于G,在RtAEG中,可求出AG,EG的长,进而可知PG的值,在RtPFG中,可求出PF,在RtPDF中,根据勾股定理可将PD的值求出;(2)将PAD绕点A顺时针旋转90,得到PAB,PD的最大值即为PB的最大值,故当P、P、B三点共线时,PB取得最大值,根据PB=PP+PB可求PB的最大值,此时APB=180-APP=135【详解】(1)如图,作AEPB于点E,APE中,APE45,PA,AEPE1,PB4,BEPBPE3,在RtABE中,AEB90,AB解法一:如图,因为四边形ABCD为正方形,可将PAD绕点A顺时针旋转90得到PAB,可得PADPAB,PDPB,PAPAPAP90,APP45,PPB90PPPA2,PDPB;解法二:如图,过点P作AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版跨境电商平台佣金比例调整合同3篇
- 二零二五版个人教育贷款担保合同模板3篇
- 二零二五年建筑装修帮工雇佣合同2篇
- 二零二五版寄卖合同范本:艺术品寄售代理中介服务协议2篇
- 二零二五版办公设备智能化升级改造合同5篇
- 二零二五版桥梁工程劳务分包合同模板6篇
- 二零二五版职工住房借款与社区文化活动支持合同3篇
- 二零二五年度黄牛养殖与屠宰行业购销法律法规遵守合同3篇
- 二零二五年铝艺门安装与外观设计承包合同3篇
- 二零二五年度电商代发货及品牌授权合同2篇
- 监理报告范本
- 店铺交割合同范例
- 大型活动LED屏幕安全应急预案
- 2024年内蒙古包头市中考道德与法治试卷
- 湖南省长沙市2024-2025学年高二上学期期中考试地理试卷(含答案)
- 自来水质量提升技术方案
- 金色简约蛇年年终总结汇报模板
- 农用地土壤环境质量类别划分技术指南(试行)(环办土壤2017第97号)
- 反向开票政策解读课件
- 工程周工作计划
- 房地产销售任务及激励制度
评论
0/150
提交评论