河南省周口市川汇区2023学年数学九上期末学业水平测试模拟试题含解析_第1页
河南省周口市川汇区2023学年数学九上期末学业水平测试模拟试题含解析_第2页
河南省周口市川汇区2023学年数学九上期末学业水平测试模拟试题含解析_第3页
河南省周口市川汇区2023学年数学九上期末学业水平测试模拟试题含解析_第4页
河南省周口市川汇区2023学年数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,在矩形中,垂足为,设,且,则的长为( )A3BCD2三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数

2、字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是( )ABCD3如图,等腰直角三角形的顶点A、C分别在直线a、b上,若ab,1=30,则2的度数为()A30B15C10D204如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OABC,双曲线y=(x0)经过AC边的中点,若S梯形OACB=4,则双曲线y=的k值为()A5B4C3D25某地区在一次空气质量检测中,收集到5天的空气质量指数如下:81,70,56,61,81,这组数据的中位数和众数分别是( )A70,81B81,81C70,

3、70D61,816已知抛物线的解析式为,则下列说法中错误的是( )A确定抛物线的开口方向与大小B若将抛物线沿轴平移,则,的值不变C若将抛物线沿轴平移,则的值不变D若将抛物线沿直线:平移,则、的值全变7点关于轴对称的点的坐标是( )ABCD8下列说法,错误的是( )A为了解一种灯泡的使用寿命,宜采用普查的方法B一组数据8,8,7,10,6,8,9的众数是8C方差反映了一组数据与其平均数的偏离程度D对于简单随机样本,可以用样本的方差去估计总体的方差9如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是()A(2,7)B(3,7)C(3,8)D

4、(4,8)10如图,ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4)若反比例函数y在第一象限内的图象与ABC有交点,则k的取值范围是()A1k4B2k8C2k16D8k1611在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是( )A24B18C16D612二次函数y=(x1)2+2,它的图象顶点坐标是()A(2,1)B(2,1)C(2,1)D(1,2)二、填空题(每题4分,共24分)13如图,矩形的对角线经过坐标原点,矩形的边分别平行于坐标轴,点在反比例函数的图

5、象上.若点的坐标为,则的值为_14在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同若从中随机摸出一个球,摸到白球的概率为,则x=_15分解因式:x34x212x=_16已知关于的方程有两个不相等的实数根,则的取值范围是_17如图,是用卡钳测量容器内径的示意图量得卡钳上A,D两端点的距离为4cm,则容器的内径BC的长为_cm18如图,直线交轴于点B,交轴于点C,以BC为边的正方形ABCD的顶点A(-1,a)在双曲线上,D点在双曲线上,则的值为_.三、解答题(共78分)19(8分)已知抛物线yx22ax+m(1)当a2,m5时,求抛物线的最值;(2)当a2时,若该抛物线与坐

6、标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;(3)当m0时,平行于y轴的直线l分别与直线yx(a1)和该抛物线交于P,Q两点若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围20(8分)定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形中,求与的度数之和;(2)如图2,为锐角的外心,过点的直线交,于点,求证:四边形是对半四边形;(3)如图3,在中,分别是,上一点,为的中点,当为对半四边形的对半线时,求的长.21(8分)随着国家“惠民政策”的陆续出台,为

7、了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率22(10分)如图,A(8,6)是反比例函数y(x0)在第一象限图象上一点,连接OA,过A作ABx轴,且ABOA(B在A右侧),直线OB交反比例函数y的图象于点M(1)求反比例函数y的表达式;(2)求点M的坐标;(3)设直线AM关系式为ynx+b,观察图象,请直接写出不等式nx+b0的解集23(10分)小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的1个扇形区域,且分别标有数字1,2,3,1

8、游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由24(10分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A唐诗;B宋词;C论语;D三字经比赛形式分“单人组”和“双人组”(1)小华参加“单人组”,他从中随机抽取一个比赛项目,恰好抽中“论语”的概率是多少?(2)小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两

9、名队员的比赛项目不能相同,且每人只能随机抽取一次则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?小明和小红都没有抽到“三字经”的概率是多少?请用画树状图或列表的方法进行说明25(12分)如图,中,以为直径作半圆交于点,点为的中点,连接(1)求证:是半圆的切线;(2)若,求的长26已知抛物线的顶点坐标是(1,4),且经过点(0,3),求与该抛物线相应的二次函数表达式参考答案一、选择题(每题4分,共48分)1、C【分析】根据同角的余角相等求出ADE=ACD,再根据两直线平行,内错角相等可得BAC=ACD,然后求出AC【详解】解:DEAC,ADE+CAD=90,ACD+CAD=90,ACD=A

10、DE=,矩形ABCD的对边ABCD,BAC=ACD,cos=,AC=故选:C【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键2、C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案【详解】画树状图得:共有27种等可能的结果,构成等腰三角形的有15种情况,以a、b、c为边长正好构成等腰三角形的概率是:故选:C【点睛】本题考查了列表法或树状图法求概率用到的知识点为:概率=所求情况数与总情况数之比3、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出ACD=60,即

11、可得出2的度数详解:如图所示:ABC是等腰直角三角形,BAC=90,ACB=45,1+BAC=30+90=120,ab,ACD=180-120=60,2=ACD-ACB=60-45=15;故选B点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出ACD的度数是解决问题的关键4、D【分析】过的中点作轴交轴于,交于,作轴于,如图,先根据“”证明,则,得到,再利用得到,然后根据反比例函数系数的几何意义得,再去绝对值即可得到满足条件的的值.【详解】过的中点作轴交轴于,交于,作轴于,如图,在和中,(),而,.故选:.【点睛】本题考查了反比例函数系数的几何意

12、义:从反比例函数图象上任意一点向轴于轴作垂线,垂线与坐标轴所围成的矩形面积为.5、A【分析】根据中位数的定义和众数的定义即可得出结论.【详解】解:将这5天的空气质量指数从小到大排列后为:56,61,70,81, 81,故这组数据的中位数为:70根据众数的定义,出现次数最多的数据为81,故众数为81.故选:A.【点睛】此题考查的是求一组数据的中位数和众数,掌握中位数的定义和众数的定义是解决此题的关键.6、D【分析】利用二次函数的性质对A进行判断;利用二次函数图象平移的性质对B、C、D进行判断【详解】解:A、确定抛物线的开口方向与大小,说法正确;B、若将抛物线C沿y轴平移,则抛物线的对称轴不变,开

13、口大小、开口方向不变,即a,b的值不变,说法正确;C、若将抛物线C沿x轴平移,抛物线的开口大小、开口方向不变,即a的值不变,说法正确;D、若将抛物线C沿直线l:yx2平移,抛物线的开口大小、开口方向不变,即a不变,b、c的值改变,说法错误;故选:D【点睛】本题考查了二次函数图象与几何变换,由于抛物线平移后的形状不变,所以a不变7、D【分析】根据特殊锐角的三角函数值,先确定点M的坐标,然后根据关于x轴对称的点的坐标x值不变,y值互为相反数的特点进行选择即可.【详解】因为,所以,所以点所以关于x轴的对称点为故选D.【点睛】本题考查的是特殊角三角函数值和关于x轴对称的点的坐标特点,熟练掌握三角函数值

14、是解题的关键.8、A【分析】利用抽样调查、普查的特点和试用的范围和众数、方差的意义即可做出判断.【详解】A灯泡数量很庞大,了解它的使用寿命不宜采用普查的方法,应该采用抽查的方法,所以A错误;B.众数是一组数据中出现次数最多的数值,所以8,8,7,10,6,8,9的众数是8正确;C. 方差反映了一组数据与其平均数的偏离程度,正确;D. 对于简单随机样本,可以用样本的方差去估计总体的方差,正确;故选A.【点睛】本题考查的是调查、众数、方差的意义,能够熟练掌握这些知识是解题的关键.9、A【解析】过C作CEy轴于E,四边形ABCD是矩形,CD=AB,ADC=90,ADO+CDE=CDE+DCE=90,

15、DCE=ADO,CDEADO,OD=2OA=6,AD:AB=3:1,OA=3,CD:AD=,CE=OD=2,DE=OA=1,OE=7,C(2,7),故选A10、C【解析】试题解析:由于ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论ABC是直角三角形,当反比例函数经过点A时k最小,经过点C时k最大,k最小=12=2,k最大=44=1,2k1故选C11、C【分析】先由频率之和为1计算出白球的频率,再由数据总数频率频数计算白球的个数【详解】摸到红色球、黑色球的频率稳定在15%和45%,摸到白球的频率为115%45%40%,故口袋中白色球的个数可能是4040%1

16、6个故选:C【点睛】大量反复试验下频率稳定值即概率关键是算出摸到白球的频率12、D【解析】二次函数的顶点式是,,其中 是这个二次函数的顶点坐标,根据顶点式可直接写出顶点坐标.【详解】解: 故选:D.【点睛】根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等二、填空题(每题4分,共24分)13、1或-3【分析】由题意根据反比例函数中值的几何意义即函数图像上一点分别作关于x、y轴的垂线与原点所围成的矩形的面积为,据此进行分析求解即可.【详解】解:由题意图形分成如下几部分,矩形的对角线为,即,根据矩形性质可知,点的坐标为,解得1或-3.故答案为:1或-3.【点睛

17、】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键14、1【分析】直接以概率求法得出关于x的等式进而得出答案【详解】解:由题意得: ,解得,故答案为:1【点睛】本题考查了概率的意义,正确把握概率的求解公式是解题的关键15、x(x2)(x6)【分析】因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底首先提取公因式x,然后利用十字相乘法求解,【详解】解:x34x212x=x(x24x12)=x(x+2)(x6)【点睛】本题考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正确计算是本题的解题关键.16、【详解

18、】根据题意得:=(2)24m=44m0,解得m.故答案为m.【点睛】本题考查一元二次方程ax2+bx+c=0(a0)根的判别式:(1)当=b24ac0时,方程有两个不相等的实数根;(2)当=b24ac=0时,方程有有两个相等的实数根;(3)当=b24ac0时,方程没有实数根.17、1【分析】依题意得:AODBOC,则其对应边成比例,由此求得BC的长度【详解】解:如图,连接AD,BC,AODBOC,AODBOC,又AD4cm,BCAD1cm故答案是:1【点睛】本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力利用数学知识解决实际问题是中学数学的重要内容解决此问题的关键在于正确理解

19、题意的基础上建立数学模型,把实际问题转化为数学问题18、6【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论【详解】A(1,a)在反比例函数y=上,a=2,A(1,2),点B在直线y=kx1上,B(0,1),AB=,四边形ABCD是正方形,BC=AB=,设B(m,0),m=3(舍)或m=3,C(3,0),点B向右平移3个单位,再向上平移1个单位,点D是点A向右平移3个单位,再向上平移1个单位,点D(2,3),将点D的坐标代入反比例函数y=中,k=6故答案为:6.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题突破口是确定出点A的坐标.三、解答题(共78分

20、)19、(3)-3;(2)k2,见解析;(3)a3或a3【分析】(3)把a2,m5代入抛物线解析式即可求抛物线的最值;(2)把a2代入,当该抛物线与坐标轴有两个交点,分抛物线与x轴、y轴分别有一个交点和抛物线与x轴、y轴交于原点,分别求出m的值,把它沿y轴向上平移k个单位长度,得到新的抛物线与x轴没有交点,列出不等式,即可判断k的取值;(3)根据题意,分a大于2和a小于2两种情况讨论即可得a的取值范围【详解】解:(3)当a2,m5时,yx24x5(x2)23所以抛物线的最小值为3(2)当a2时,yx24x+m因为该抛物线与坐标轴有两个交点,该抛物线与x轴、y轴分别有一个交点=36-4m=2,m

21、=4,yx24x+4=(x-2)2沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,则k2;该抛物线与x轴、y轴交于原点,即m=2,yx24x把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,yx24x+k此时2,即364k2解得k4;综上,k2时,函数沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点; (3)当m2时,yx22ax抛物线开口向上,与x轴交点坐标为(2,2)(2a,2),a2直线l分别与直线yx(a3)和该抛物线交于P,Q两点,平移直线l,可以使点P,Q都在x轴的下方,当a2时,如图3所示,此时,当x2时,2a+32,解得a3;当a2时,如图2

22、所示,此时,当x2a时,2aa+32,解得a3综上:a3或a3【点睛】本题主要考查的是二次函数的综合应用,掌握二次函数的最值问题和根据题意进行分类讨论是解本题的关键.20、(1);(2)详见解析;(3)5.25.【分析】(1)根据四边形内角和与对半四边形的定义即可求解;(2)根据三角形外心的性质得,得到,从而求出=60,再得到,根据对半四边形的定义即可证明;(3)先根据为对半四边形的对半线得到,故可证明为等边三角形,再根据一线三等角得到,故,列出比例式即可求出AD,故可求解AC的长.【详解】(1)四边形内角和为,=则,(2)连结,由三角形外心的性质可得,所以,所以,则在四边形中,则另两个内角之

23、和为,所以四边形为对半四边形;(3)若为对半线,则,所以为等边三角形又,F为DE中点,故【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知根据题意弄懂对半四边形,利用相似三角形的性质进行求解.21、该种药品平均每次降价的百分率是30%.【解析】试题分析:设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是,据此列出方程求解即可试题解析:设该种药品平均每场降价的百分率是x,由题意得:解得:(不合题意舍去),=30%答:该种药品平均每场降价的百分率是30%考点:一元二次方程的应用;增长率问题22、 (1)y;(2)M(1,4);(3)0 x8或x1【分析】(1)根据待定系数法即可

24、求得;(2)利用勾股定理求得ABOA10,由ABx轴即可得点B的坐标,即可求得直线OB的解析式,然后联立方程求得点M的坐标;(3)根据A、M点的坐标,结合图象即可求得【详解】解:(1)A(8,6)在反比例函数图象上6,即m48,反比例函数y的表达式为y;(2)A(8,6),作ACx轴,由勾股定理得OA10,ABOA,AB10,B(18,6),设直线OB的关系式为ykx,618k,k,直线OB的关系式为yx,由 ,解得x1又在第一象限x1故M(1,4);(3)A(8,6),M(1,4),观察图象,不等式nx+b0的解集为:0 x8或x1【点睛】本题主要考查一次函数与反比例函数的交点问题,解题的关键是掌握待定系数法求函数解析式及求直线、双曲线交点的坐标23、(1);(2)该游戏公平【分析】(1)根据概率公式直接计算即可;(2)画树状图得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平【详解】解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论