




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,ABC中,点D,E在边AB,AC上,DEBC,ADE与ABC的周长比为25,则ADDB为( )A25B425C23D522某排球队名场上队员的身高(单位:)是:,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均数变小,方差变大C平均数变大,方
2、差变小D平均数变大,方差变大3如图,二次函数的图象与轴正半轴相交于A、B两点,与轴相交于点C,对称轴为直线且OA=OC,则下列结论:关于的方程有一个根为其中正确的结论个数有( )A1个B2个C3个D4个4如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则BED的正切值等于()ABC2D5有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A平均数B方差C中位数D极差6如图所示,已知圆心角,则圆周角的度数是( )ABCD7如图是一个正方体被截去一角后得到的几何体,从上面看
3、得到的平面图形是()ABCD8下列说法正确的是( )A若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖B可能性很大的事件在一次试验中必然会发生C相等的圆心角所对的弧相等是随机事件D掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等9用配方法解一元二次方程x22x5的过程中,配方正确的是()A(x+1)26B(x1)26C(x+2)29D(x2)2910一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为()ABCD二、填空题(每小题3分,共24分)11两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员
4、正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F. 若点B和点E、点C和F的离地高度分别相同,现消防员将水流抛物线向上平移0.4m,再向左后退了_m,恰好把水喷到F处进行灭火12如图,若内一点满足,则称点为的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮已知中,为的布罗卡尔点,若,则_13两块大小相同,含有30角的三角板如图水平放置,将CDE绕点C按逆时针方向旋转,当点E的对应点E恰好落在AB上时,CDE旋转的角度是_度14如图,两个同心
5、圆,大圆半径,则图中阴影部分的面积是_15如图,在矩形 ABCD 中,如果 AB3,AD4,EF 是对角线 BD 的垂直平分线,分别交 AD,BC 于 点 EF,则 ED 的长为_16在中,若,则的度数是_17如图,点D、E、F分别位于ABC的三边上,满足DEBC,EFAB,如果AD:DB=3:2,那么BF:FC=_18某校共1600名学生,为了解学生最喜欢的课外体育活动情况,学校随机抽查了200名学生,其中有92名学生表示喜欢的项目是跳绳,据此估计全校喜欢跳绳这项体育活动的学生有_人三、解答题(共66分)19(10分)如图,ABC中,A=30,B=45,AC=4,求AB的长.20(6分)如图
6、,在ABC中,ABAC,O是ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,DAE105(1)求CAD的度数;(2)若O的半径为4,求弧BC的长21(6分)如图所示,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆O,分别与BC、AB相交于点D、E,连接AD,已知CADB(1)求证:AD是O的切线;(2)若B30,CD,求劣弧BD的长;(3)若AC2,BD3,求AE的长22(8分)某校九年级举行毕业典礼,需要从九年级班的名男生名女生中和九年级班的名男生名女生中各随机选出名主持人(1)用树状图或列表法列出所有可能情形;(2)求名主持人恰好男女的概率23(8分)已知:如图,点P
7、是一个反比例函数的图象与正比例函数y2x的图象的公共点,PQ垂直于x轴,垂足Q的坐标为(2,0)(1)求这个反比例函数的解析式;(2)如果点M在这个反比例函数的图象上,且MPQ的面积为6,求点M的坐标24(8分)台州人民翘首以盼的乐清湾大桥于2018年9月28日正式通车,经统计分析,大桥上的车流速度(千米/小时)是车流密度(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究证明:当时,车流速度是车流密度的一次函数(1)求大桥上车流密度为50/辆千米时的车流速度;(2)在某一交通高峰时
8、段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量车流速度车流密度,求大桥上车流量的最大值25(10分)为培养学生良好的学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,请根据图表中提供的信息,解答下列问题:整理情况频数频率非常好0.21较好70一般不好36(1)本次抽样共调查了多少名学生?(2)补全统计表中所缺的数据(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名26(
9、10分)某校举行秋季运动会,甲、乙两人报名参加100 m比赛,预赛分A、B、C三组进行,运动员通过抽签决定分组(1)甲分到A组的概率为 ;(2)求甲、乙恰好分到同一组的概率参考答案一、选择题(每小题3分,共30分)1、C【分析】由题意易得,根据两个相似三角形的周长比等于相似比可直接得解【详解】,ADE与ABC的周长比为25,故选C【点睛】本题主要考查相似三角形的性质,关键是根据两个三角形相似,那么它们的周长比等于相似比2、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为=188,方差为S2=
10、;换人后6名队员身高的平均数为=187,方差为S2=188187,平均数变小,方差变小,故选A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3、C【解析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断;由图象可知当x3时,y0,可判断;由OAOC,且OA1,可判断;由OAOC,得到方程有一个根为c,设另一根为x,则=2,解方程可得x=4+c即可判断;从而可得出答案【详解】由图象开口向下,可知a0,与y轴
11、的交点在x轴的下方,可知c0,又对称轴方程为x2,所以0,所以b0,abc0,故正确;由图象可知当x3时,y0,9a+3b+c0,故错误;由图象可知OA1OAOC,OC1,即c1,c1,故正确;OAOC,方程有一个根为c,设另一根为x对称轴为直线x=2,=2,解得:x=4+c故正确;综上可知正确的结论有三个故选C【点睛】本题考查了二次函数的图象和性质熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键特别是利用好题目中的OAOC,是解题的关键4、D【分析】根据同弧或等弧所对的圆周角相等可知BED=BAD,再结合图形根据正切的定义进行求解即可得.【详解】DAB=DEB,tanDE
12、B= tanDAB=,故选D【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键5、C【解析】9人成绩的中位数是第5名的成绩参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有9个人,且他们的分数互不相同, 第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少 故选:C【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键6、A【详解】是同弧所对的圆周角和圆心角,因为圆心角BOC=100,所以圆周角BAC=50【点睛】本题考查圆周角
13、和圆心角,解本题的关键是掌握同弧所对的圆周角和圆心角关系,然后根据题意来解答7、B【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形【详解】从上面看,是正方形右边有一条斜线,如图:故选B【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键8、C【分析】根据概率的意义对A进行判断,根据必然事件、随机事件的定义对B、C进行判断,根据可能性的大小对D进行判断【详解】A、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误B、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C、相等的圆心角所对的弧相等是随机事件
14、,所以该选项正确;D、图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以该选项错误;故选:C【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键9、B【分析】在方程左右两边同时加上一次项系数一半的平方即可【详解】解:方程两边同时加上一次项系数一半的平方,得到x22x+15+1,即(x1)26,故选:B【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数10、C【分析】
15、如图,根据菱形的性质可得, ,再根据菱形的面积为,可得,由边长结合勾股定理可得,由两式利用完全平方公式的变形可求得,进行求得,即可求得答案.【详解】如图所示:四边形是菱形, ,面积为, 菱形的边长为,由两式可得:,即该菱形的两条对角线的长度之和为,故选C【点睛】本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.二、填空题(每小题3分,共24分)11、【详解】设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入得,20k+21.2=9.2,k=-0.6,y=-0.6x+21.2.把y=6.2代入得,-0.6x+21.2=6.2,x=25,F(25,6.2)
16、.设抛物线解析式为:y=ax2+bx+1.2,把E(20,9.2), F(25,6.2)代入得, ,解之得:,y=-0.04x2+1.2x+1.2,设向上平移0.4m,向左后退了hm, 恰好把水喷到F处进行灭火由题意得y=-0.04(x+h)2+1.2(x+h)+1.2+0.4,把F(25,6.2)代入得,6.2=-0.04(25+h)2+1.2(25+h)+1.2+0.4,整理得:h2+20h-10=0,解之得: ,(舍去).向后退了m故答案是:【点睛】本题考查了二次函数和一次函数的实际应用,设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入求出直线解析式,从而求出点F的坐标
17、.把E(20,9.2), F(25,6.2)代入y=ax2+bx+1.2求出二次函数解析式.设向左平移了hm,表示出平移后的解析式,把点F的坐标代入可求出k的值.12、【分析】作CHAB于H首先证明,再证明PABPBC,可得,即可求出PA、PC.【详解】解:作CHAB于HCA=CB,CHAB,ACB=120,AH=BH,ACH=BCH=60,CAB=CBA=30,BC=2CH,AB=2BH=2= ,PAC=PCB=PBA,PAB=PBC,PABPBC,PA=,PC=,PA+PC=,故答案为:.【点睛】本题考查等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是准确寻找相似三角形解决问题
18、13、1【分析】根据旋转性质及直角三角形两锐角互余,可得ECB是等边三角形,从而得出ACE的度数,再根据ACE+ACE=90得出CDE旋转的度数【详解】解:根据题意和旋转性质可得:CE=CE=BC,三角板是两块大小一样且含有1的角,B=60ECB是等边三角形,BCE60,ACE90601,故答案为:1【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到ABC等边三角形14、【分析】根据题意可知,阴影部分的面积等于半径为4cm,圆心角为60的扇形面积.【详解】,阴影部分的面积为扇形OBC的面积:,故答案为:.【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式是解决本
19、题的关键.15、【分析】连接EB,构造直角三角形,设AE为,则,利用勾股定理得到有关的一元一次方程,即可求出ED的长【详解】连接EB,EF垂直平分BD, ED=EB,设,则,在RtAEB中,即:,解得:,故答案为:【点睛】本题考查了矩形的性质,线段的垂直平分线的性质和勾股定理,正确根据勾股定理列出方程是解题的关键16、【分析】先根据非负数的性质求出,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论【详解】在中,故答案为【点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.17、3:2【解析】因为DEBC,所以,因为EFAB,所以,所以,
20、故答案为: 3:2.18、736【分析】由题意根据样本数据的比值和相对应得总体数据比值相同进行分析求解即可.【详解】解:设全校喜欢跳绳这项体育活动的学生有m人,由题意可得:,解得.所以全校喜欢跳绳这项体育活动的学生有736人.故答案为:736.【点睛】本题考查的是通过样本去估计总体对应的数据,熟练掌握通过样本去估计总体对应数据的方法是解题的关键三、解答题(共66分)19、1+1【解析】试题分析:本题注意考查的就是利用三角函数解直角三角形,过点C作CDAB于D点,然后分别根据RtADC中A的正弦、余弦值和RtCDB中B的正切值得出AD和BD的长度,从而得出AB的长度.试题解析:过点C作CDAB于
21、D点,在RtADC中,A=30,AC=4,CD=AC=4=1,AD=,在RtCDB中,B=45,CD=1,CD=DB=1,AB=AD+DB=1+120、(1)CAD35;(2)【分析】(1)由AB=AC,得到=,求得ABC=ACB,推出CAD=ACD,得到ACB=2ACD,于是得到结论;(2)根据平角的定义得到BAC=40,连接OB,OC,根据圆周角定理得到BOC=80,根据弧长公式即可得到结论【详解】(1)AB=AC,=,ABC=ACB,D为的中点,=,CAD=ACD,=2,ACB=2ACD,又DAE=105,BCD=105,ACD=105=35,CAD=35;(2)DAE=105,CAD=
22、35,BAC=180-DAE-CAD=40,连接OB,OC,BOC=80,弧BC的长=【点睛】本题考查了三角形的外接圆和外心,圆心角、弧、弦的关系和圆周角定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧21、(1)见解析;(2);(3)AE【分析】(1)如图1,连接OD,由等腰三角形的性质可证BODBCAD,由直角三角形的性质可求ADO90,可得结论;(2)分别求出OD的长度和DOB的度数,再由弧长公式可求解;(3)通过证明ACDBDE,可得,设CD2x,DE3x,由平行线的性质可求x,由勾股定理可求AB的长,即可求解【详解】解:(1)如图1,连接OD,ACB90,CAD+ADC
23、90,OBOD,BODB,CADB,CADODB,ODB+ADC90,ADO90,又OD是半径,AD是O的切线;(2)B30,ACB90,CAD30,CAB60,AD2CD3,DAB30,ADOD,OD,ODOB,B30,BODB30,DOB120,劣弧BD的长;(3)如图2,连接DE,BE是直径,BDE90,ACBEDB90,ACDE,BCAD,ACDEDB,ACDBDE,设CD2x,DE3x,ACDE,x,CD1,BCBD+CD4,AB2,DEAC,AE【点睛】此题考查的是圆的综合大题、勾股定理和相似三角形的判定及性质,掌握切线的判定定理、弧长公式圆周角定理及推论、勾股定理和相似三角形的判
24、定及性质是解决此题的关键22、(1)答案见解析;(2)【分析】(1)首先根据题意列表,由树形法可得所有等可能的结果;(2)由选出的是2名主持人恰好1男1女的情况,根据概率公式即可求得解【详解】解:(1)用树状图表示如下:(A表示男生,B表示女生)由树状图知共有6种等可能结果(2)由树状图知:2名主持人1男1女有3种,即(A1,B2),(A1,B2)(A2,B1),所以P(恰好一男一女)=【点睛】此题考查的是用列表法或树状图法求概率注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比23、(1)
25、y;(2)M(5,)或(1,8)【解析】(1)由Q(2,0),推出P(2,-4),利用待定系数法即可解决问题;(2)根据三角形的面积公式求出MN的长,分两种情形求出点M的坐标即可.【详解】(1)把x2代入y2x得 y4P(2,4),设反比例函数解析式y(k0),P在此图象上k2(4)8,y;(2)P(2,4),Q(2,0)PQ4,过M作MNPQ于N则 PQMN6,MN3,设M(x,),则 x2+35或x231当x5时,当x1时,1,M(5,)或(1,8)故答案为:(1)y;(2)M(5,)或(1,8)【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是用待定系数法求反比例函数的解析式,利用数形结合的思想表示出三角形的面积也是解答本题的关键.24、(1)车流速度68千米/小时;(2)应把大桥上的车流密度控制在20千米/小时到70千米/小时之间;(3)车流量y取得最大值是每小时4840辆【分析】(1)设车流速度与车流密度的函数关系式为v=kx+b,列式求出函数解析式,将x=50代入即可得到答案;(2)根据题意列不等式组即可得到答案;(3)分两种情况:、时分别求出y的最大值即可.【详解】(1)设车流速度与车流密度的函数关系式为v=kx+b,由题意,得,解得,当时,车流速度是车流密度的一次函数为,当x=50时,(千米/小时),大桥上车流密度为50/辆千米时的车流速
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《麦克利夫综合症》课件
- (3)-专题17 梳理说明顺序(讲义)
- 《理论探讨》课件
- 贯彻领导力提升组织效能讲义
- 南方科技大学《影视创作实践》2023-2024学年第二学期期末试卷
- 昆明艺术职业学院《建筑历史与文化》2023-2024学年第二学期期末试卷
- 山东省博兴县2024-2025学年高三下4月模拟考试语文试题含解析
- 西北政法大学《市政工程估价课程设计》2023-2024学年第一学期期末试卷
- 玛纳斯县2025届三年级数学第二学期期末经典试题含解析
- 乌鲁木齐职业大学《GMDSS英语听力与会话》2023-2024学年第一学期期末试卷
- 李克勤《红日》粤语发音歌词中文谐音-
- 仁爱版初中英语单词表(默写版)
- 企业防渗漏标准做法案例库图文丰富
- Unit 2 Listening and talking -高中英语人教版(2019)必修第一册
- 医院分娩记录单
- GB/T 17872-1999江海直达货船船型系列
- GB/T 12027-2004塑料薄膜和薄片加热尺寸变化率试验方法
- 中医手诊培训资料课件
- 消防主机运行记录表(标准范本)
- 应急处置措施交底
- Q∕GDW 12154-2021 电力安全工器具试验检测中心建设规范
评论
0/150
提交评论