版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,是的直径,垂足为点,连接交于点,延长交于点,连接并延长交于点.则下列结论:;点是的中点.其中正确的是( )ABCD2已知二次函数的图象如图所示,则下列结论正确的是( )ABCD的符
2、号不能确定3若二次函数的图像与轴有两个交点,则实数的取值范围是( )ABCD4如图,AB是O的弦,半径OCAB,D为圆周上一点,若的度数为50,则ADC的度数为 ()A20B25C30D505已知抛物线与轴没有交点,那么该抛物线的顶点所在的象限是( )A第一象限B第二象限C第三象限D第四象限6如图,PA、PB是O的切线,切点分别为A、B,若OA2,P60,则的长为( )ABCD7下列图形中,不是轴对称图形的是()ABCD8已知,是方程的两个实数根,则的值是( )A2023B2021C2020D20199若点,在双曲线上,则,的大小关系是( )ABCD10已知一元二次方程1(x3)(x+2)=0
3、,有两个实数根x1和x2(x1x2),则下列判断正确的是( )A2x1x23Bx123x2C2x13x2Dx12x2311将二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,下列关于平移后所得抛物线的说法,正确的是( )A开口向下B经过点C与轴只有一个交点D对称轴是直线12如图,AB是半圆O的直径,AC为弦,ODAC于D,过点O作 OEAC交半圆O于点E,过点E作EFAB于F若AC=2,则OF的长为 ( )ABC1D2二、填空题(每题4分,共24分)13在直径为4cm的O中,长度为的弦BC所对的圆周角的度数为_.14下列投影或利用投影现象中,_是平行投影,_是中心投影 (填序号)1
4、5已知圆锥的底面半径为3cm,母线长4cm,则它的侧面积为 cm116已知函数ykx22x+1的图象与x轴只有一个有交点,则k的值为_17若弧长为4的扇形的圆心角为直角,则该扇形的半径为 18如图,二次函数的图象与轴交于点,与轴的一个交点为,点在抛物线上,且与点关于抛物线的对称轴对称已知一次函数的图象经过两点,根据图象,则满足不等式的的取值范围是_三、解答题(共78分)19(8分)如图,在中,.(1)在边上求作一点,使得.(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,求证:为线段的黄金分割点.20(8分)在平面直角坐标系中,点O为坐标原点,抛物线yax2+ax+a(a0)交
5、x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tanCAO1(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(1)如图1,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sinDGH,以DF为边作正方形DFMN,P为FM上一点,连接PN,将MPN沿PN翻折得到TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK,求cosKDN的值21(8分) “2020比
6、佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A全程马拉松;B半程马拉松;C迷你马拉松小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组(1)小明被分配到“迷你马拉松”项目组的概率为 ;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率22(10分)近年来,各地“广场舞”噪音干扰的问题倍受关注相关人员对本地区1565岁年龄段的市民进行了随机调查,并制作了如下相应的统计图市民对“广场舞”噪音干扰的态度有以下五种:A没影响 B影响不大 C有影响,建议做无声运动 D影响很大,建议取缔 E不关心这个问题 根据以上信息解答下列问题:
7、(1)根据统计图填空: ,A区域所对应的扇形圆心角为 度; (2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?23(10分)如图,在平面直角坐标系中,将绕点顺指针旋转到的位置,点、分别落在点、处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下午,若点,则点的横坐标为_24(10分)某班数学兴趣小组在学习二次根式时进行了如下题目的探索研究:(1)填空:;(2)观察第(1)题的计算结果回答:一定等于 ;(3)根据(1)、(2
8、)的计算结果进行分析总结的规律,计算: 25(12分)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了 名学生,a= %;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为 度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和26如图,已知ABC中,点D在AC
9、上且ABD=C,求证:AB2=ADAC参考答案一、选择题(每题4分,共48分)1、A【分析】根据“同弧所对圆周角相等”以及“等角的余角相等”即可解决问题,运用相似三角形的判定定理证明EBCBDC即可得到,运用反证法来判定即可.【详解】证明:BCAB于点B,CBD+ABD=90,AB为直径,ADB=90,BAD+ABD=90,CBD=BAD,BAD=CEB,CEB=CBD,故正确;C=C,CEB=CBD,EBCBDC,故正确;ADB=90,BDF=90,DE为直径,EBD=90,EBD=BDF,DFBE,假设点F是BC的中点,则点D是EC的中点,ED=DC,ED是直径,长度不变,而DC的长度是不
10、定的,DC不一定等于ED,故是错误的.故选:A.【点睛】本题考查了圆周角的性质,余角的性质,相似三角形的判定与性质,平行线的判定等知识,知识涉及比较多,但不难,熟练掌握基础的定理性质是解题的关键.2、A【分析】由题意根据二次函数的图象与性质即可求出答案判断选项【详解】解:由图象可知开口向上a0,与y轴交点在上半轴c0,ac0,故选A.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型3、D【解析】由抛物线与x轴有两个交点可得出=b2-4ac0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围【详解】抛物线y=x2-2x+m与x轴有两个交点
11、,=b2-4ac=(-2)2-41m0,即4-4m0,解得:m1故选D【点睛】本题考查了抛物线与x轴的交点,牢记“当=b2-4ac0时,抛物线与x轴有2个交点”是解题的关键4、B【分析】利用圆心角的度数等于它所对的弧的度数得到BOC=50,利用垂径定理得到,然后根据圆周角定理计算ADC的度数【详解】的度数为50,BOC=50,半径OCAB,ADC=BOC=25故选B【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了垂径定理和圆周角定理5、D【分析】根据题目信息可知当y=0时,此时,可以求出a的取值范
12、围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限.【详解】解:抛物线与轴没有交点,时无实数根;即,解得,又的顶点的横坐标为:;纵坐标为:;故抛物线的顶点在第四象限.故答案为:D.【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x轴无交点得出时无实数根,再利用根的判别式求解a的取值范围.6、C【解析】试题解析:PA、PB是O的切线,OBP=OAP=90,在四边形APBO中,P=60,AOB=120,OA=2,的长l=.故选C.7、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称
13、图形,不合题意;D、是轴对称图形,不合题意;故选:A【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.8、A【分析】根据题意可知b=3-b2,a+b=-1,ab=-3,所求式子化为a2-b+2019=a2-3+b2+2019=(a+b)2-2ab+2016即可求解.【详解】,是方程的两个实数根,;故选A【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键9、C【分析】根据题目分别将三个点的横坐标值带入双曲线解析式,即可得出所对应的
14、函数值,再比较大小即可【详解】解:若点,在双曲线上,故选:C【点睛】本题考查的知识点是反比例函数图象上点的坐标特征,本题还可以先分清各点所在象限,再利用各自的象限内反比例函数的增减性解决问题10、B【解析】设y=-(x3)(x+2),y1=1(x3)(x+2)根据二次函数的图像性质可知y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x3)(x+2),y1=1(x3)(x+2)y=0时,x=-2或x=3,y=-(x3)(x+2)的图像与x轴的交点为(-2,0)(3,0),1(x3)(x+2)=0,y1=1
15、(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,-10,两个抛物线的开口向下,x123x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.11、C【分析】根据二次函数图象和性质以及二次函数的平移规律,逐一判断选项,即可得到答案【详解】二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,平移后的二次函数解析式为:,20,抛物线开口向上,故A错误,抛物线不经过点,故B错误,抛物线顶点坐标为:(2,0),且开口向上,抛物线与轴只有一个交点,故C正确,抛物线的对称轴为:直线x=2,D错误
16、故选C【点睛】本题主要考查二次函数的图象和性质以及平移规律,掌握“左加右减,上加下减”是解题的关键12、C【详解】解:ODAC,AD=AC=1,OEAC,DAO=FOE,ODAC,EFAB,ADO=EFO=90,在ADO和OFE,DAO=FOE,ADO=EFO,AO=OE,ADOOFE,OF=AD=1,故选C【点睛】本题考查1全等三角形的判定与性质;2垂径定理,掌握相关性质定理正确推理论证是解题关键二、填空题(每题4分,共24分)13、60或 120【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出OCF的大小,进而求出BOC的大小,再由圆周角定理可
17、求出D、E大小,进而得到弦BC所对的圆周角【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为D或E,如下图所示,作OFBC,由垂径定理可知,F为BC的中点,CF=BF=BC=,又直径为4cm,OC=2cm,在RtAOC中,cosOCF=,OCF=30,OC=OB,OCF=OBF=30,COB=120,D=COB=60,又圆内接四边形的对角互补,E=120,则弦BC所对的圆周角为60或120故答案为:60或120【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键14、 【分析】根据中心
18、投影的性质,找到是灯光的光源即可判断出中心投影;再利用平行光下的投影属于平行投影可判断出平行投影【详解】解:都是灯光下的投影,属于中心投影;因为太阳光属于平行光线,所以日晷属于平行投影;中是平行光线下的投影,属于平行投影,故答案为:;【点睛】此题主要考查了中心投影和平行投影的性质,解题的关键是根据平行投影和中心投影的区别进行解答即可15、11【解析】试题分析:圆锥的侧面积公式:圆锥的侧面积底面半径母线由题意得它的侧面积考点:圆锥的侧面积点评:本题属于基础应用题,只需学生熟练掌握圆锥的侧面积公式,即可完成.16、0或1【分析】当k0时,函数为一次函数,满足条件;当k0时,利用判别式的意义得到当0
19、时抛物线与x轴只有一个交点,求出此时k的值即可【详解】当k0时,函数解析式为y2x+1,此一次函数与x轴只有一个交点;当k0时,(2)24k0,解得k1,此时抛物线与x轴只有一个交点,综上所述,k的值为0或1故答案为0或1【点睛】本题考查了抛物线与x轴的交点问题,注意要分情况讨论17、1【分析】根据扇形的弧长公式计算即可,【详解】扇形的圆心角为90,弧长为4,即4=,则扇形的半径r=1故答案为1考点:弧长的计算18、【分析】将点A的坐标代入二次函数解析式求出m的值,再根据二次函数解析式求出点C的坐标,然后求出点B的坐标,点A、B之间部分的自变量x的取值范围即为不等式的解集.【详解】解:抛物线经
20、过点抛物线解析式为点坐标对称轴为x=-2,B、C关于对称轴对称,点坐标由图象可知,满足的的取值范围为故答案为:【点睛】本题考查了利用二次函数的性质来确定系数m和图象上点B的坐标,而根据图象可知满足不等式的的取值范围是在B、A两点之间.三、解答题(共78分)19、(1)见解析;(2)证明见解析.【分析】(1)利用等腰三角形的性质及AA定理,做AB的垂直平分线或ABC的角平分线都可,(2)利用相似三角形的性质得到,然后根据黄金分割的定义得到结论.【详解】解:(1)作法一:如图1.点为所求作的点.作法二:如图2.点为所求作的点.(2)证明:,.根据(1)的作图方法,得.点为线段的黄金分割点.【点睛】
21、本题考查等腰三角形的性质,相似三角形的判定和性质及尺规作图,黄金分割的定义,掌握相关性质定理是本题的解题关键.20、(1)yx2+x+1;(2)D的坐标为(1,1);(1)【分析】(1)通过抛物线y先求出点A的坐标,推出OA的长度,再由tanCAO1求出OC的长度,点C的坐标,代入原解析式即可求出结论;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,证DZEDWB,得到DZDW,由此可知点D的横纵坐标相等,设出点D坐标,代入抛物线解析式即可求出点D坐标;(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,过点F作DC的垂线,交DC的延长线于点U,先求出点G坐标,求
22、出直线DG解析式,再求出点F的坐标,即可求出正方形FMND的边长,再求出其对角线FN的长度,最后证点F,K,M,N,D共圆,推出KDNKFN,求出KFN的余弦值即可【详解】解:(1)在抛物线y=中,当y0时,x11,x24,A(1,0),B(4,0),OA1,tanCAO1,OC1OA1,C(0,1),a1,a2,抛物线的解析式为:yx2+x+1;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,ZDWEDB90,ZDEWDB,DZEDWB90,DEDB,DZEDWB(AAS),DZDW,设点D(k,k2+k+1),kk2+k+1,解得,k1(舍去),k21,D的坐标为(1,1);
23、(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,sinDGH设HI4m,HG5m,则IG1m,由题意知,四边形OCDH是正方形,CDDH1,CDQ+IDH90,IDH+DHI90,CDQDHI,又CQDDIH90,CQDDIH(AAS),设DIn,则CQDIn,DQHI4m,IQDQDI4mn,GQGIIQ1m(4mn)nm,GCQ+QCD90,QCD+CDQ90,GCQCDQ,GCQCDQ,n2m,CQDI2m,IQ2m,tanCDG,CD1,CG,GOCOCG,设直线DG的解析式为ykx+,将点D(1,1)代入,得,k,yDG,设点F(t,t2+t+1),则t2+t+1
24、t+,解得,t11(舍去),t2,F(,)过点F作DC的垂线,交DC的延长线于点U,则,在RtUFD中,DF,由翻折知,NPMNPT,MNPTNP,NMNTND,TPNMPN,TPMP,又NSKD,DNSTNS,DSTS,SNKTNP+TNS9045,SKN45,TPK180TPN,MPK180MPN,TPKMPK,又PKPK,TPKMPK(SAS),MKPTKP45,DKMMKP+TKP90,连接FN,DM,交点为R,再连接RK,则RKRFRDRNRM,则点F,D,N,M,K同在R上,FN为直径,FKN90,KDNKFN,FN,在RtFKN中,cosKDNcosKFN【点睛】考核知识点:二次
25、函数综合题熟记二次函数基本性质,数形结合分析问题是关键.21、(1);(2)【分析】(1)直接利用概率公式计算;(2)先利用画树状图展示所有9种等可能的结果数,找出两人被分配到同一个项目组的结果数,然后根据概率公式计算【详解】解:(1)小明被分配到“迷你马拉松”项目组的概率为;(2)画树状图为:共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,所以两人被分配到同一个项目组的概率【点睛】此题主要考查概率的求解,解题的关键是熟知树状图的画法.22、(1)32,1;(2)500人;(3)补图见解析;(4)5.88万人【解析】分析:分析:(1)用1减去A,D,B,E的百分比即可,运用A的百分比乘360即可(2)用不关心的人数除以对应的百分比可得(3)求出25-35岁的人数再绘图(4)用14万市民乘C与D的百分比的和求解本题解析:(1)m%=1-33%-20%-5%-10%=32%,所以m=32,A区域所对应的扇形圆心角为:36020%=1,故答案为32,1(2)一共调查的人数为:255%=500(人).(3)(3)500(32%+10%)=210(人)2535岁的人数为:21010304070=60(人)(4)14(32%+10%)=5.88(万人)答:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标合同的相关法律规定
- 2024年版的劳务派遣协议书:详细合同样本
- 2024年物业公司转让协议
- 投资双方协议书样本
- 土地使用权购买合同样本
- 绿色蔬菜交易合同参考
- 房产租赁与抵押借款协议
- 教职工培训进修协议书范例
- 施工合同情势变更导致的工程质量问题分析
- 建筑工地施工劳务承包协议书
- 辽宁省抚顺市2024-2025学年人教版八年级上册数学期中模拟试题(含答案)
- GB/T 19609-2024卷烟用常规分析用吸烟机测定总粒相物和焦油
- (高清版)DB34∕T 1146-2010 保温装饰一体板外墙外保温系统
- 雕梁画栋 课件 2024-2025学年人美版(2024)初中美术七年级上册
- 部编版小学语文六年级上册第六单元整体解读与教学规划
- 人教版物理九年级全一册17.2欧姆定律 教学设计
- 期中模拟练习(试题)-2024-2025学年苏教版二年级上册数学
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
- 教育新篇章:数字化转型
- 个人住房贷款提前还款月供及节省利息EXCEL计算
- GA/T 1073-2013生物样品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙醇和正丁醇的顶空-气相色谱检验方法
评论
0/150
提交评论