下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基本三角函数重要知识点已知角为第一象限,求/2,/3,/4为第几象限弧度与角度的转变特别是一弧度大约等于57度要知道,便于三角函数比较大小和判断正负,举个例子sin(cos30)与cos(cos30)大小弧长公式以及弧长公式的公式的推导,扇形面积公式:基本三角函数的定义 此章节的基础,比如能理解为什么sinX在一二象限为正?为什么正弦和余弦平方和等于一?为什么正切余切在一三象限为正,为何正切等于正弦除余弦 重点掌握正弦、余弦和正切余切,正割余割不用掌握诱导公式,奇变偶不变(对而言,指取奇数或偶数),符号看象限(看原函数,同时可把看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤:这
2、个是此章节的重点,只要理解这个定理,就不必记书上繁琐的公式三角函数的两角和与差公式的推导过程,并逐渐推导二倍角公式,半角公式,万能公式,辅助角公式四川去年高考题就是余弦两角和的公式推导三角函数的定义域、值域,周期性、奇偶性、单调性、对称中心和对称轴、图像以及三角函数的变换 ? 振幅变化: 左右伸缩变化: 左右平移变化 上下平移变化 补充知识点1常见三角不等式:(1)若,则.(2) 若,则. (3) .2.三角形面积定理:. 3.三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关
3、系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如,等),如(1)已知,那么的值是_(答:);(2)已知,且,求的值(答:);(3)已知为锐角,则与的函数关系为_(答:)(2)三角函数名互化如(1)求值(答:1);(2)已知,求的值(答:)(3)公式变形使用(。如(1)已知A、B为锐角,且满足,则_(答:);(2)设中,则此三角形是_三角形(答:等边)(4)三角函数次数的降升(降幂公式:,与升幂公式:,)。如(1)若,化简为_(答:);4.辅助角公式中辅助角的确定:(其中角所在的象限
4、由a, b的符号确定,角的值由确定)在求最值、化简时起着重要作用。如(1)若方程有实数解,则的取值范围是_.(答:2,2);(2)当函数取得最大值时,的值是_(答:);(3)如果是奇函数,则=(答:2);(4)求值:_(答:32)5.函数的图象与图象间的关系:函数的图象纵坐标不变,横坐标向左(0)或向右(0)平移个单位得的图象;函数图象的纵坐标不变,横坐标变为原来的,得到函数的图象;函数图象的横坐标不变,纵坐标变为原来的A倍,得到函数的图象;函数图象的横坐标不变,纵坐标向上()或向下(),得到的图象。要特别注意,若由得到的图象,则向左或向右平移应平移个单位,如(1)函数的图象经过怎样的变换才能
5、得到的图象?(答:向上平移1个单位得的图象,再向左平移个单位得的图象,横坐标扩大到原来的2倍得的图象,最后将纵坐标缩小到原来的即得的图象);(2) 要得到函数的图象,只需把函数的图象向_平移_个单位(答:左;);(3)将函数图像,按向量平移后得到的函数图像关于原点对称,这样的向量是否唯一?若唯一,求出;若不唯一,求出模最小的向量(答:存在但不唯一,模最小的向量);(4)若函数的图象与直线有且仅有四个不同的交点,则的取值范围是(答:)6.研究函数性质的方法:类比于研究的性质,只需将中的看成中的,但在求的单调区间时,要特别注意A和的符号,通过诱导公式先将化正。如(1)函数的递减区间是_(答:);(2)的递减区间是_(答:);(3)设函数的图象关于直线对称,它的周期是,则A、B、在区间上是减函数C、D、的最大值是A(答:C);(4)对于函数给出下列结论:图象关于原点成中心对称;图象关于直线成轴对称;图象可由函数的图像向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 立春科学解读
- 专用油品运输业务协议(2024年度)版B版
- 2025年高效节水打机井建设与维护合同2篇
- 24节气:大寒 相关英语练习
- 16《金色的草地》说课稿-2024-2025学年三年级上册语文统编版
- 2025年度智慧交通PPP项目合作协议3篇
- 个人过桥融资合同2024年适用样本版
- 氢能燃料电池研发合作合同
- 2025版宠物领养中心公益项目合作协议3篇
- 2024年美发美容师个人服务合同
- 儿童运动发育的早期干预和康复
- 《道路交通安全法》课件
- 2023年MBA综合真题及答案(管理类联考综合)
- 工作优化与效益提升
- 电机教学能力大赛获奖之教学实施报告
- 新生儿家庭式护理
- 山东省泰安市新泰市2023-2024学年四年级上学期期末数学试卷
- DB21-T 3324-2020 螺杆挤压式秸秆膨化机 技术条件
- 供水公司招聘考试题库及答案
- 2024年国家能源集团江苏电力有限公司招聘笔试参考题库附带答案详解
- 河南省郑州市郑州经济技术开发区2023-2024学年七年级上学期期末历史试题(无答案)
评论
0/150
提交评论