精品解析2022年最新人教版九年级数学下册第二十七章-相似同步测评试题_第1页
精品解析2022年最新人教版九年级数学下册第二十七章-相似同步测评试题_第2页
精品解析2022年最新人教版九年级数学下册第二十七章-相似同步测评试题_第3页
精品解析2022年最新人教版九年级数学下册第二十七章-相似同步测评试题_第4页
精品解析2022年最新人教版九年级数学下册第二十七章-相似同步测评试题_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人教版九年级数学下册第二十七章-相似同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若两个相似三角形的面积比为,则它们的对应边的比是( )ABCD2、如图,在ABC中,点D、E分别是AB、AC的中

2、点,若ABC的面积为16,则四边形BCED的面积为( )A8B12C14D163、如图,中,D、E分别为AB、AC的中点,则与的面积比为( )ABCD4、如图,在ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB4,BC6,CE1,则CF的长为()AB1.5CD15、下列图形中,不是位似图形的是( )ABC D6、如图,点是正方形的边边上的黄金分割点,且,表示为边长的正方形面积,表示以为长,为宽的矩形面积,表示正方形除去和剩余的面积,:的值为( )ABCD7、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF

3、保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边cm,cm,测得边DF离地面的高度m,m,则树高AB为( )A4mB5mC5.5mD6.5m8、下列图形中,ABC与DEF不一定相似的是( )ABCD9、如图,以点O为位似中心,将DEF放大后得到ABC,已知OD=1,OA=3若DEF的面积为S,则ABC的面积为( )A2SB3SC4SD9S10、如图,D、E分别是ABC的边AB、BC上的点,且DEAC,若BEEC13,则DOE与COA的周长之比为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形中,是的中点,是线段上的动点,则的最小值是_

4、2、如图,已知直线abc,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,若AC4,CE6,BF,则BD的值是 _3、如图,在ABC中,DEBC,BE与CD相交于点F,如果,那么等于_ 4、如图,菱形中,为上一点,且,连接、交于点,过点作于点,则的长为_5、如图,在矩形ABCD中,AB30,BC40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于点F若PDF为直角三角形,则PD的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,点是一次函数与反比例函数()的图象的一个交点,点是一次函数与轴的交点(

5、1)求反比例函数表达式;(2)点是轴正半轴上的一个动点,设,过点作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,交一次函数的图象于点当时,求ABC的面积;当a为何值时,ACF与EQF相似2、如图,四边形中,平分,为的中点(1)求证:;(2)求证:;(3)若,求的值3、(1)证明命题:若直线与直线互相垂直,则我们可以先证明“直线与直线互相垂直时,”请利用图1完成证明(2)应用命题:如图2,中,BC在x轴上,点A在y轴正半轴上求线段AB的垂直平分线的解析式;点M在平面直角坐标系内,点F在直线AC上,以A,B,F,M为顶点的四边形

6、是菱形,请直接写出点F的坐标4、在如图所示的平面直角系中,已知,(方格中每个小正方形的边长均为1个单位)(1)画出;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形,并写出点的坐标 5、如图是由小正方形构成的66网格,每个小正方形的顶点叫格点,圆O经过A、B两个格点,以及格线上的点C,仅用无刻度直尺在给定的网格中按要求画图(画图过程用虚线表示,画图结果用实线表示)(1)作劣弧BC的中点M;(2)在优弧BC上找一点D,使得ADBC;(3)在优弧AC上找一点E,使得-参考答案-一、单选题1、D【解析】【分析】根据相似三角形面积之比等于相似比的平方,求面积之比的算术平方根即可

7、【详解】相似多边形的面积比等于相似比的平方,面积比为,对应边的比为,故选:【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形面积之比等于相似比的平方是解题的关键2、B【解析】【分析】直接利用三角形中位线定理得出DEBC,DE=BC,再利用相似三角形的判定与性质得出即可【详解】解:在ABC中,点D、E分别是AB、AC的中点,DEBC,DE=BC,ADE=B,AED=C,ADEABC,=,SABC=16,S四边形BCED= SABC-SADE=16-4=12故选B【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出ADEABC是解题关键3、D【解析】【分析】证明DE是ABC的中位线

8、,由三角形中位线定理得出DEBC,DE=BC,证出ADEABC,由相似三角形的性质得出ADE的面积:ABC的面积=1:4,即可得出结果【详解】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=()2=1:4,故选:D【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键4、D【解析】【分析】过O作OMBC交CD于M,根据平行四边形的性质得到BODO,CDAB4,ADBC6,根据三角形的中位线的性质得到CMCD2,OMBC3,通过CFEMOE,根据相似三角形

9、的性质得到,代入数据即可得到结论【详解】解:过O作OMBC交CD于M,在ABCD中,BODO,CDAB4,ADBC6,CMCD2,OMBC3,OMCF,CFEMOE,即,CF1故选:D【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识解此题的关键是准确作出辅助线,合理应用数形结合思想解题5、D【解析】【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形【详解】解:根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形故选D【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两

10、个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点6、C【解析】【分析】设正方形ABCD的边长为a,关键黄金分割点的性质得到和,用a表示出、和的面积,再求比例【详解】解:设正方形ABCD的边长为a,点E是AB上的黄金分割点,故选C【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质7、D【解析】【分析】根据即可求得的长,进而求得树高【详解】解:依题意, cm,cm,m,m, m m故选D【点睛】本题考查了相似三角形的性质与判定,相似三角形的应用,根据题意找到相似三角形是解题的关键8、A【解析】【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时

11、,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90,所以根据ACB=CDB=90,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理9、D【解析】【分析】首先由OD=1,OA=3,求出DEF和ABC的位似比为1:3,进而得到相似比为1:3,即可根据相似三角形面积比等于相似比的平

12、方求出ABC的面积【详解】解:OD=1,OA=3,DEF和ABC的位似比为1:3,DEF和ABC的相似比为1:3,即,ABC的面积为故选:D【点睛】此题考查了位似三角形的性质,相似三角形的性质,解题的关键是熟练掌握位似三角形的性质位似三角形的位似比等于相似比相似三角形性质:相似三角形对应边成比例,对应角相等相似三角形的相似比等于周长比,相似三角形的相似比等于对应高的比,对应角平分线的比以及对应中线的比,相似三角形的面积比等于相似比的平方10、B【解析】【分析】根据DEAC,可得BDEBAC,ODEOCA,从而得到 ,再根据相似三角形的周长比等于相似比,即可求解【详解】解:DEAC,BDEBAC

13、,ODEOCA, ,BEEC13, ,DOE与COA的周长之比为故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的周长比等于相似比是解题的关键二、填空题1、【解析】【分析】先利用勾股定理求出的长,再根据垂线段最短可得当时,取得最小值,然后根据相似三角形的判定证出,最后根据相似三角形的性质即可得【详解】解:矩形中,是的中点,由垂线段最短可知,当时,取得最小值,在和中,即,解得,即的最小值是,故答案为:【点睛】本题考查了垂线段最短、矩形的性质、相似三角形的判定与性质等知识点,正确找出两个相似三角形是解题关键2、3【解析】【分析】根据平行线分线段成比例定理列出比例式,把已知数

14、据代入计算即可【详解】解:abc,即,解得:BD=3,故答案为:3【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键3、【解析】【分析】首先根据得到,根据,得出,然后得到,再根据同底不同高,面积比等于高之比即可【详解】解:,分别过点作的垂线,交于,在与,故答案是:【点睛】本题考查了相似三角形的判定与性质,解题的关键是了解相似三角形面积的比等于相似比的平方4、4【解析】【分析】过点作,根据菱形的面积和边长求得,则,可得,可得,根据菱形的性质可得,进而证明,列出比例式求得,进而可得,代入即可求得的长【详解】解:如图,过点作,四边形是菱形,故答案为:【点睛】本题考查了

15、相似三角形的性质与判定,菱形的性质,掌握相似三角形的性质与判定是解题的关键5、5或【解析】【分析】分情况进行讨论,当DPF=90时,过点O作OHAD于H,先证DHODAB,得到,求出,证明HOP=HPO=45,得到OH=PH=15,则PD=HD-PH=5;当PFD=90时,先求出,得到,从而得到DAO=ODA;证明OFEBAD,推出,则,最后证明PDFBDA,则【详解】解:如图1所示,当DPF=90时,过点O作OHAD于H,HPF=90,四边形ABCD是矩形,BD=2OD,BAD=OHD=90,AD=BC=40,OHAB,DHODAB,由折叠的性质可得:,HOP=45,HOP=HPO=45,O

16、H=PH=15,PD=HD-PH=5;如图2所示,当PFD=90时,OFE=90,四边形ABCD是矩形,BCD=90,CD=AB=30, ,DAO=ODA,由折叠的性质可知:AO=EO=25,PEO=DAO=ODA,又OFE=BAD=90,OFEBAD,PFD=BAD,PDF=BDA,PDFBDA,综上所述,当PDF为直角三角形,则PD的长为5或,故答案为:5或【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件三、解答题1、(1)y=6x;(2)3.5;(3)当a3或a【解析】【分析】(1)由一次函数解析式可得点

17、M的坐标为(3,2),然后把点M的坐标代入反比例函数解析式,求得k的值,可得反比例函数表达式;(2)作CDAB交AB于点D当a4时,利用函数解析式可分别求出点A、B、C、D的坐标,于是可得AB和CD的长度,即可求得ABC的面积;分ACF为直角,FAC为直角两种情况,利用数形结合即可求解【详解】解:(1)把M(3,m)代入yx+1,则m2将(3,2)代入y=kx,得k6,则反比例函数解析式是:y(2)作CDAB交AB于点D当a4时,A(4,5),B(4,1.5),则AB3.5点Q为OP的中点,Q(2,0),C(2,3),则D(4,3),CD2,SABCABCD=12点E,F在yx+1上点E(-1

18、,0) F(a2,aQ(a2EQ=QF EQF为等腰直角三角形,当ACF与EQF相似时,则ACF为等腰直角三角形,i、当ACF为直角时,则点C和点A的纵坐标相同,APCQ=12又A在直线yx+1上,12a=a+1,解得a3或当a的值为3时,ACF与EQF相似ii、当FAC为直角时,过A作ANCQ如图由题意得A(a,a+1),C(a2,12ACF为等腰直角三角形N(a2,aANCQAN=CNa2=12a-解得:a-2+2736=-1+73当a3或a-1+733时,ACF与EQF相似【点睛】本题综合考查了待定系数法求函数解析式,函数图象上点的坐标特征以及相似的性质难度较大,解题时需要注意数形结合2

19、、(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)先根据相似三角形的判定证出,再根据相似三角形的性质即可得证;(2)先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据平行线的判定即可得证;(3)先根据相似三角形的判定证出,再根据相似三角形的性质可得,由此即可得出答案【详解】证明:(1)平分,在和中,;(2),为的中点,由(1)已得:,;(3),为的中点,由(2)已证:,即,【点睛】本题考查了相似三角形的判定与性质、平行线的判定等知识点,熟练掌握相似三角形的判定与性质是解题关键3、(1)证明见解析;(2);(3)、(3,0)、 (-3,

20、8)【解析】【分析】(1)分别在直线与直线上各取一点,再作x轴的垂线,根据“一线三垂直”模型证明相似即可;(2)求出线段AB的中点及直线AB的解析式,根据直线垂直即可求出垂直平分线的解析式;(3)根据AB为边和对角线分类讨论即可,具体计算可以根据菱形对角线互相垂直平分进行计算【详解】(1)设G,P,则点P在直线上,点G在直线上过G作GHx轴于H,过P作PQx轴于Q直线与直线互相垂直即化简得即直线与直线互相垂直时,(2),OB=OC=3,OA=4A(0,4),B(-3,0),C(3,0)直线AB的解析式为直线AC的解析式为AB中点坐标为设线段AB的垂直平分线的解析式为且过点,解得线段AB的垂直平分线的解析式为(3)当AB为对角线时,F为AB的垂直平分线与AC的交点,联立,解得:即F坐标为当AB为菱形的边时,BC关于y轴对称F在直线AB右边时,F与C重合,此时F(3,0)当F在直线AB左边时,ABCM,AM1平分,BC平分A M1x轴,F点坐标为(-3,8)综上所述:F点坐标、(3,0)、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论