版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学第二学期第二十三章概率初步专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别从袋中随机摸出1个球是红球的概率为( )ABCD2、下
2、列事件为必然事件的是()A抛掷一枚硬币,正面向上B在一个装有5只红球的袋子中摸出一个白球C方程x22x0有两个不相等的实数根D如果|a|b|,那么ab3、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( )ABCD4、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5
3、190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD5、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m36913353203
4、6335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C由此估计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株6、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )ABCD7、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次
5、摸出的小球的标号之和是3的概率是( )ABCD8、下列说法不正确的是()A不可能事件发生的概率是0B概率很小的事件不可能发生C必然事件发生的概率是1D随机事件发生的概率介于0和1之间9、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )ABCD10、下列说法正确的是( )A“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B“打开电视机,正在播放乒乓球比赛”是必然事件C“面积相等的两个三角形全等”是不可能事件D投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次第卷(非选择题 7
6、0分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_2、一个不透明的袋子里有3个红球和5个白球,每个球除颜色外都相同,从袋中任意摸出一个球,是红球的可能性_(填“大于”“小于”或“等于”)是白球的可能性3、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是_4、在20以内的素数中,随机
7、抽取其中的一个素数,则所抽取的素数是偶数的可能性大小是_5、在不透明的袋中装有仅颜色不同的一个红球和一个蓝球,从此袋中随机摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的球颜色不同的概率是_三、解答题(5小题,每小题10分,共计50分)1、盲盒为消费市场注入了活力某商家将1副单价为60元的蓝牙耳机、2个单价为40元的多接口优盘、1个单价为30元的迷你音箱分别放入4个外观相同的盲盒中(1)如果随机抽一个盲盒,直接写出抽中多接口优盘的概率;(2)如果随机抽两个盲盒,求抽中总价值不低于80元商品的概率2、每年的4月23日为“世界读书日”,某学校为了培养学生的阅读习惯,计划开展以“书香润泽心灵
8、,阅读丰富人生”为主题的读书节活动,在“形象大使”选拔活动中,A,B,C,D,E这5位同学表现最为优秀,学校现打算从5位同学中任选2人作为学校本次读书节活动的“形象大使”,请你用列表或画树状图的方法,求恰好选中A和C的概率3、在6张卡片上分别写有16的整数,随机抽取1张放回,再随机抽取1张(1)求第二次取出的数字小于第一次取出的数字的概率(2)请你根据题意设计某个简单的等可能性事件,并求出这个事件的概率4、如图,转盘黑色扇形和白色扇形的圆心角分别为120和240(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率
9、(注:当指针恰好指在分界线上时,无效重转)5、在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球(1)用画树状图或列表的方法求从袋中同时摸出的两个球都是黄球的概率;(2)再往袋中放入若干个黑球,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数-参考答案-一、单选题1、A【分析】根据概率公式计算即可【详解】解:袋中装有3个红球和5个绿球共8个球,从袋中随机摸出1个球是红球的概率为,故选:A【点睛】此题考查了概率的计算公式,正确掌握计算公式是解题的关键2、C【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,叫做必然事件,进行逐一判断即可【详解】解:A、抛掷
10、一枚硬币,可能正面向上,也有可能反面向上,不是必然事件,不符合题意;B、在一个装有5只红球的袋子中摸出一个白球是不可能发生的,不是必然事件,不符合题意;C、,方程x22x0有两个不相等的实数根,是必然事件,符合题意;D、如果|a|b|,那么ab或a=-b,不是必然事件,不符合题意;故选C【点睛】本题主要考查了必然事件的定义,熟知定义是解题的关键3、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:跳坐握跳(跳,跳)(跳,坐)(跳,握)坐(坐,跳)(坐,坐)(坐,握)握(握,跳
11、)(握,坐)(握,握)由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键4、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;若再次做随机
12、抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答5、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考查
13、了频率估计概率,掌握理解利用频率估计概率是解题关键6、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可【详解】解:一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,抽到每个球的可能性相同,布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,P(白球)故选:D【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键7、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可【详解】解:列表如下:12123234
14、由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为,故选:B【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率8、B【分析】根据概率的意义分别判断后即可确定正确的选项【详解】解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;B. 概率很小的事件也可能发生,故该选项不正确,符合题意;C. 必然事件发生的概率是1,故该选项正确,不符合题意;D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点
15、睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为09、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色的概率为故选:B【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色小立方体的个数是解题关键10、A【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝
16、上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题1、1【分析】设黄球的个数为x个,然后根据概率公式列方程,解此分式方程即可求得答案【详解】解:设黄球的个数为x个,根据
17、题意得:,解得:x=1,经检验,x=1是原分式方程的解,黄球的个数为1个故答案为:1【点睛】此题考查了分式方程的应用,以及概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比2、小于【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可【详解】解:袋子里有3个红球和5个白球,红球的数量小于白球的数量,从中任意摸出1只球,是红球的可能性小于白球的可能性故答案为:小于【点睛】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等3、cab【分析】根据概率公式分别求出各事件的概率,故可求
18、解【详解】依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,a,b,c的大小关系是cab故答案为:cab【点睛】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比4、【分析】先确定素数有2,3,5,7,11,13,17,19有8个,是偶数的只有一个2,根据定义计算即可【详解】20以内的素数有2,3,5,7,11,13,17,19有8个,是偶数的只有一个2,所抽取的素数是偶数的可能性大小是,故答案为:【点睛】本题考查了素数即除了1和它自身外,不能被其他自然数整除的数,可能性大小的计算,熟练掌
19、握可能性大小的计算是解题的关键5、【分析】根据题意,列表分析所有可能,然后运用概率公式求解即可【详解】解:列表如下,表示红球,表示蓝球第一次第二次 总共4种情况,两次摸出的球颜色不同的2种所以两次摸出的球颜色不同的概率是故答案是:【点睛】本题考查了列表法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比三、解答题1、(1)抽中多接口优盘的概率为;(2)P(抽中商品总价值不低于80元)【分析】(1)利用列举法求解即可;(2)先用列表法或树状图法得出所有的等可能的结果数,然后找到总价值不低于80元商品的结果数,最后根据概率公式求解即可【详解】解:(1)
20、随机抽取一个盲盒可以抽到蓝牙耳机,多接口优盘1,多接口优盘2,迷你音箱,一共4种等可能性的结果,其中抽到多接口优盘的结果数有2种,抽到多接口优盘;(2)将蓝牙耳机记为A,多接口U盘记为、,迷你音箱记作C则从4个盲盒中随机抽取2个的树状图如下:由上图可知,随机抽两个盲盒,所获商品可能出现的结果有12种,它们出现的可能性相等,其中抽中商品总价值不低于80元的结果有8种P(抽中商品总价值不低于80元)【点睛】本题主要考查了列举法求解概率,树状图或列表法求解概率,解题的关键在于能够熟练掌握相关知识进行求解2、【分析】画树状图展示所有等可能的结果数,找出恰好选中甲和乙的结果数,然后根据概率公式求解【详解
21、】解:画树状图为:共有20种等可能的结果数,其中恰好选中A和C的结果数有2种,所以恰好选中甲和乙的概率是【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率3、(1);(2)设计见详解:.【分析】(1)根据题意列举出所有等情况数,进而利用第二次取出的数字小于第一次取出的数字的情况数除以总情况数即可;(2)由题意设计在6张卡片上分别写有16的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率,进而通过概率=所求情况数与总情况数之比进行求解.【详解】解:(1)画树状图如下:共有36种等可能的情况,其中第二次取出的数字小于第一次取出的数字有15种,第二次取出的数字小于第一次取出的数字的概率是;(2)设计:在6张卡片上分别写有16的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率?共有36种等可能的情况,其中两次抽中的卡片上的数都是偶数的有9种,两次抽中的卡片上的数都是偶数的概率是.【点睛】本题主要考查概率的求法及树状图法;用到的知识点为:概率=所求情况数与总情况数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度房地产分销渠道拓展及管理合同3篇
- 转向臂课程设计卡
- 水文课程设计模板内容
- 2025年百日誓师大会演讲稿例文(2篇)
- 2025年社区文化工作计划(3篇)
- 学校长值日制度模版(2篇)
- 学校传染病管理制度例文(三篇)
- 2025年度路沿石生产工艺改进与创新合作合同3篇
- 二零二五年度水泥预制品行业电子商务平台建设合同2篇
- 2024年华东师大版必修1物理下册阶段测试试卷
- 2025年首都机场地服公司招聘笔试参考题库含答案解析
- 《廉政讲堂格言》课件
- 审计服务采购招标文件
- 2024年03月中国农业发展银行内蒙古分行校园招考拟招录人员笔试历年参考题库附带答案详解
- 空置房检查培训
- 浙江省绍兴市越城区2023-2024学年四年级上学期数学期末考试试卷
- 广东省广州市海珠区2023-2024学年九年级上学期期末英语试题(答案)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之8:“5领导作用-5.2创新方针”(雷泽佳编制-2025B0)
- 2023年新疆广播电视台招聘事业单位工作人员笔试真题
- 金科新未来大联考2025届高三12月质量检测语文试题(含答案解析)
- 烤烟科技员考试题答案
评论
0/150
提交评论