精品解析2022年最新浙教版初中数学七年级下册第四章因式分解同步测评试题(名师精选)_第1页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解同步测评试题(名师精选)_第2页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解同步测评试题(名师精选)_第3页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解同步测评试题(名师精选)_第4页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解同步测评试题(名师精选)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初中数学七年级下册第四章因式分解同步测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)22、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.53、下列因式分解正确的是()A.ab+bc+bb(a+c)B.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a4、下列各式由左边到右边的变

2、形,是因式分解的是( )A.B.C.D.5、对于任何整数a,多项式都能( )A.被3整除B.被4整除C.被5整除D.被a整除6、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4B.C.(x+2)(x2)x24D.x22x+1(x1)27、下列各式从左到右的变形中,为因式分解的是()A.x(ab)axbxB.x21+y2(x1)(x+1)+y2C.ax+bx+cx(a+b)+cD.y21(y+1)(y1)8、下列各组式子中,没有公因式的是()A.a2+ab与ab2a2bB.mx+y与x+yC.(a+b)2与abD.5m(xy)与yx9、下列各式从左到右的变形属于因式分

3、解的是( )A.B.C.D.10、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)11、下列各选项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)212、下列分解因式中,x2+2xy+x=x(x+2y);x2+4x+4=(x+2)2;x2+y2=(x+y)(xy).正确的个数为()A.3B.2C.1D.013、下列因式分解正确的是( )A.x2-4=(x+4)(x-4)B.x2+2x+1=x(x+2)+1C.3mx-6my=3m(x

4、-6y)D.x2y-y3=y(x+y)(x-y)14、下列各式从左到右的变形,因式分解正确的是()A.x2+4(x+2)2B.x210 x+16(x4)2C.x3xx(x21)D.2xy+6y22y(x+3y)15、下列各式中,不能用完全平方公式分解的个数为( );.A.1个B.2个C.3个D.4个二、填空题(10小题,每小题4分,共计40分)1、因式分解:_2、因式分解:_3、分解因式:_4、因式分解:x26x_;(3mn)23m+n_5、若,则_6、因式分解:_7、分解因式:x27xy18y2_8、已知,则的值等于_9、分解因式:2x3+12x2y+18xy2_10、分解因式:12a2b9

5、ac_三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)2(x+2)2+8(x+2)+8;(2)2m4+32m2、(1)计算:(2)因式分解:3、已知:如图所示的大长方形是由四个不同的小长方形拼成,我们可以用两种不同的方法表示长方形的面积:x2+px+qx+pq;(x+p)(x+q),请据此回答下列问题:(1)因为:x2+(p+q)x+pq=x2+px+qx+pq,所以:x2+(p+q)x+pq=_(2)利用(1)中的结论,我们可以对特殊的二次三项进行因式分解x2+3x+2=x2+(2+1)x+21=(x+2)(x+1);x2-4x-5=x2+(1-5)x+1(-5)=_(请将结

6、果补充出来)(3)请利用上述方法将下列多项式分解因式:x2-9x+20(写出分解过程)-参考答案-一、单选题1、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,

7、即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.3、B【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.【详解】解:A.ab+bc+bb(a+c+1),因此选项A不符合题意;B.a29(a+3)(a3),因此选项B符合题意;C.(a1)2+(a1)(a1)(a1+1)a(a1),因此选项C不符合题意;D.a(a1)a2a,不是因式分解,因此选项D不符合题意;故选:B.【点睛】本题考查因式分解,涉及提公因式、平方差、完全平方公式等知识,是重要考点,掌握相关知识是解题关键.4、D【分析】根据因式分解是把一个多项

8、式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.5、B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式则对于任何整数a,多项式都能被4整除.故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.6、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右

9、边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、D【分析】根据因式分解的定义解答即可.【详解】解:A、x(ab)axbx,是整式乘法,故此选项不符合题意;B、x21+y2(x1)(x+1)+y2,不是因式分解,故此选项不符合题意;C、ax+bx+cx(a+b

10、)+c,不是因式分解,故此选项不符合题意;D、y21(y+1)(y1),是因式分解,故此选项符合题意.故选D.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8、B【分析】公因式的定义:多项式中,各项都含有一个公共的因式,因式叫做这个多项式各项的公因式.【详解】解:、因为,所以与是公因式是,故本选项不符合题意;、与没有公因式.故本选项符合题意;、因为,所以与的公因式是,故本选项不符合题意;、因为,所以与的公因式是,故本选项不符合题意;故选:B.【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因

11、式,然后再确定公共因式.9、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A、,属于整式乘法;B、,属于因式分解;C、,没把一个多项式转化成几个整式积的形式,不属于因式分解;D、,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.10、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因

12、式,解题的关键在于能够熟练掌握分解因式的方法.11、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.12、C【分析】直接利用提取公因式法以及公式法分别分解因式判断即可.【详解】解:x2+2xy+x=x(x+2y+1),故错误;x2+4x+4=(x+2)2,故正确;-x2+y2=(y+x)(y-x),故错误;故选:C.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.13、D【分析】根据提

13、公因式法、公式法逐项进行因式分解,再进行判断即可.【详解】解:A.x2-4=(x+2)(x-2),因此选项A不符合题意;B.x2+2x+1=(x+1)2,因此选项B不符合题意;C.3mx-6my=3m(x-2y),因此选项C不符合题意;D.x2y-y3=y(x2-y2)=y(x+y)(x-y),因此选项D符合题意;故选:D.【点睛】本题考查提公因式法、公式法分解因式,掌握a2-b2=(a+b)(a-b),a22ab+b2=(ab)2是正确应用的前提.14、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10 x+16(x-

14、4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.15、C【分析】分别利用完全平方公式分解因式得出即可.【详解】解:x2-10 x+25=(x-5)2,不符合题意;4a2+4a-1不能用完全平方公式分解;x2-2x-1不能用完全平方公式分解;m2+m=-(m2-m+)=-(m-)2,不符合题

15、意;4x4x2+不能用完全平方公式分解.故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.二、填空题1、【分析】先分组,然后根据公式法因式分解.【详解】.故答案为:.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.2、【分析】直接提取公因式整理即可.【详解】解:,故答案是:.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.3、【分析】根据平方差公式 进行因式分解,即可.【详解】解:,故答案为:【点睛】本题主要考查了因式分解的方法,解题的关键是根据多项式的特点选合适的方法进行因式分解.4、x(x6) (3mn)(

16、3mn1) 【分析】把x26x 中x提取出来即可,给(3mn)23m+n先加括号,然后再运用提取公因式法分解因式即可.【详解】解:x26xx(x6);(3mn)23m+n(3mn)2(3mn)(3mn)(3mn1).故答案为:x(x6),(3mn)(3mn1).【点睛】本题主要考查了提取公因式法分解因式,正确添加括号成为解答本题的关键.5、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.6、【分析】将y(1-m)变形为-y(m

17、-1),再提取公因式即可.【详解】x(m-1)+ y(1-m)= x(m-1)-y(m-1),=(x-y)(m-1),故答案为:(x-y)(m-1).【点睛】本题考查了因式分解,熟练进行代数式的变形构造公因式是解题的关键.7、【分析】根据十字相乘法因式分解即可.【详解】x27xy18y2,故答案为:.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.8、-36【分析】将所求代数式先提取公因式xy,再利用完全平方公式分解因式,得出,然后整体代入x+y,xy的值计算即可.【详解】解:=,=-36,故答案为:-36.【点睛】本题考查了因式分解方法的应用,代数式求值的方法,同时还隐含了整体的

18、数学思想和正确运算的能力.9、2x(x+3y)2【分析】首先提取公因式2x,再利用完全平方公式分解因式得出答案.【详解】解:原式2x(x2+6xy+9y2)2x(x+3y)2.故答案为:2x(x+3y)2.【点睛】此题考查的是因式分解,掌握提公因式法和公式法是解题的关键.10、【分析】根据提公因式法分解因式求解即可.【详解】解:12a2b9ac.故答案为:.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.三、解答题1、(1)2(x+4)2;(2)2m2(m+4)(m4)【分析】(1)直接提取公因式2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式2m2,再利用平方差公式分解因式得出答案.【详解】解:(1)2(x+2)2+8(x+2)+82(x+2)2+4(x+2)+42(x+2+2)22(x+4)2;(2)2m4+32m22m2(m216)2m2(m+4)(m4).【点睛】本题考查了提公因式法及公式法分解因式,解题的关键是正确运用公式.2、(1);(2)【分析】(1)把多项式的每一项分别除以单项式 从而可得答案;(2)先提取公因式 再按照完全平方公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论