精品试题京改版九年级数学下册第二十五章-概率的求法与应用定向练习练习题(含详解)_第1页
精品试题京改版九年级数学下册第二十五章-概率的求法与应用定向练习练习题(含详解)_第2页
精品试题京改版九年级数学下册第二十五章-概率的求法与应用定向练习练习题(含详解)_第3页
精品试题京改版九年级数学下册第二十五章-概率的求法与应用定向练习练习题(含详解)_第4页
精品试题京改版九年级数学下册第二十五章-概率的求法与应用定向练习练习题(含详解)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、九年级数学下册第二十五章 概率的求法与应用定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为(

2、)ABCD2、同时抛掷两枚质地均匀的硬币,出现两个正面朝上的概率是()ABCD3、数学兴趣小组在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制了如图所示的频率分布散点图,则符合这一结果的试验可能是( )A抛掷一枚硬币,正面向上的概率B抛掷一枚骰子,朝上一面的点数为3的倍数的概率C从装有3个红球、2个黄球的袋子中,随机摸出1个球为红球的概率D一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张,牌的花色是红桃的概率4、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )ABCD5、一个不透明的袋子中装有四个小球,它们除了分别标有的

3、数字1,2,3,6不同外,其他完全相同,任意从袋子中摸出一球后不放回,再任意摸出一球,则两次摸出的球所标数字之积为6的概率是()ABCD6、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )ABCD7、假如每个鸟卵都可以成功孵化小鸟,且孵化出的小鸟是雄性和雌性的可能性相等现有2枚鸟卵,孵化出的小鸟恰有一个雌性一个雄性的概率是( )ABCD8、在“3,2,1,0,1,2,3”七个数中,任取一个数等于a,恰好使方程(a21)x2+(a+2)x+a30是一元二次方程的概率是()ABCD19、在进行一个游戏时,游戏的次数和某种结果出现的

4、频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:游戏次数1002004001000频率0.320.340.3250.332甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”()A甲正确,乙错误B甲错误,乙正确C甲、乙均正确D甲、乙均错误10、如图,正方形ABCD内接于O,在这个圆面上随意抛一粒豆子(豆子大小忽略不计),若豆子落在正方形ABCD内的概率记为P1,豆子落在图中阴影部分内的概率记为P2,则对P1和P2的大小判断正确的是()AP1P2BP1P2CP1P2D与圆的半径有关第卷(非选择题 70分)二、填空

5、题(5小题,每小题4分,共计20分)1、一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为 _个2、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为_(结果保留)3、在一个不透明的盒子中装有黑球和白球共200个,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,则盒子中的白球有_4、

6、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是_5、在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是_三、解答题(5小题,每小题10分,共计50分)1、某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是_(2)用树状图或列表法表示乙同学随机选择两天,其中有一天是星期二的概率是多少?2、落实“双减”政策,丰富课后服务,为了发展学生兴趣

7、特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习用列表法或画树状图法求:(1)甲、乙都选择(窗花剪纸)课程的概率;(2)甲、乙选择同一门课程的概率3、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:洗手监督岗,戴口罩监督岗,就餐监督岗,操场活动监督岗李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗(1)王老师被分配到“就餐监督岗”的概率为 ;(2)用列表法或画树状图法,求

8、李老师和王老师被分配到同一个监督岗的概率4、某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录特级柑橘的售价(元/千克)1415161718特级柑橘的日销售量(千克)1000950900850800 (1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_千克;(2)按此市场调节的观律,若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由考虑到该水果公司的储存条件,该公司

9、打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由5、不透明的口袋里装有2个红球和2个黄球(除颜色不同外,其它都相同)现进行两次摸球活动,第一次随机摸出一个小球后不放回,第二次再随机摸出一个小球,请用树状图或列表法,求两次摸出的都是红球的概率-参考答案-一、单选题1、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可【详解】解:装有7个只有颜色不同的球,其中4个黑球,从布袋中随机摸出一个球,摸出的球是黑球的概率故选:C【点睛】本题考查的是概率公式,熟知随机事件A的概率P(

10、A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键2、B【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解【详解】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率故答案为,故选:B【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率3、C【分析】根据统计图可知,试验结果在0.6附近波动,即其概率P0.6,计算四个选项的概率,约为0.6者即为正确答案【详解】解:A

11、、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、抛掷一枚骰子,朝上一面的点数为3的倍数的概率为,故此选项不符合题意;C从装有3个红球、2个白球袋子中,随机摸出一球为红球的概率为,故此选项符合题意;D一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张,牌的花色是红桃的概率为,故此选项不符合题意;故选:C【点睛】考查了利用频率估计概率的知识,解题的关键是能够分别求得每个选项的概率,然后求解4、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案【详解】解:在不透明的布袋中装有1个白球,2个红球,3个黑球,从袋中任意摸出一个球,摸出的球是红球的概率

12、是:故选:B【点睛】此题考查了概率公式的应用注意概率=所求情况数与总情况数之比5、D【分析】先列表展示所有可能的结果数为12,再找出两次摸出的球所标数字之积为6的结果数,然后根据概率的概念计算即可【详解】解:列表如下:所有等可能的情况有12种,其中两次摸出的球所标数字之积为6的有4种结果,所以两次摸出的球所标数字之积为6的概率为=.故答案为:D【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比6、C【分析】用绿灯

13、亮的时间除以三种灯亮总时间即可解答【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:故选C【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.7、D【分析】用A表示雄性,B表示雌性,画出树状图,共有4个等可能的结果,孵化出的小鸟恰有两个雌性一个雄性的结果有2个,然后根据概率公式计算即可【详解】解:用A表示雄性,B表示雌性,画树状图如图:共有4个等可能的结果,孵化出的小鸟恰有一个雌性一个雄性的结果有2个,孵化出的小鸟恰有两个雌性一个雄性的概率为;故选:D【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况

14、数与总情况数之比8、C【分析】根据一元二次方程的定义求出方程(a21)x2+(a+2)x+a30是一元二次方程时a的取值范围,进而再根据概率的意义进行计算即可【详解】解:当a210,即a1时,方程(a21)x2+(a+2)x+a30是一元二次方程,在“3,2,1,0,1,2,3”七个数中有5个数使方程(a21)x2+(a+2)x+a30是一元二次方程,恰好使方程(a21)x2+(a+2)x+a30是一元二次方程的概率是故选:C【点睛】本题考查了一元二次方程的定义和概率的意义,熟练掌握各定义是解决本题的关键9、C【分析】由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可【详解】由

15、表可知该种结果出现的概率约为掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6向上的点数与4相差1有3、5掷一枚质地均匀的骰子,向上的点数与4相差1的概率为甲的答案正确又“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为乙的答案正确综上所述甲、乙答案均正确故选C【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率10、B【分析】求落在正方形和阴影部分内的概率,可直接求正方形的面积和阴影部分的面积即可得出二者的大小关系【详解】解:设的半径为r,则正方形的对角线为2r,故选:B【点睛】题目主要考查概率的比较,包括正方形和圆的基本性质,熟练掌握正方形和圆的基本性

16、质是解题关键二、填空题1、【分析】先由频率频数数据总数计算出频率,再由题意列出方程求解即可【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得x20,经检验x20是原方程的解,估计口袋中白球的个数约为20个故答案为:20【点睛】本题考查了用频率估计概率大量反复试验下频率稳定值即概率关键是得到关于黑球的概率的等量关系2、#【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解【详解】解:根据题意得:飞镖落在阴影区域内的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果

17、数;P(必然事件)=1;P(不可能事件)=0是解题的关键3、40【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率【详解】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,摸到白球的概率约为0.2白球的个数=2000.2=40个故答案为:40【点睛】本题主要考查了利用频率估计概率,熟知大量反复试验下频率稳定值即概率是解题的关键4、【分析】根据概率的计算公式计算【详解】一枚质地均匀的正方体骰子有6种等可能性,朝上一面的点数是“5”的概率是,故答案为:【点睛】本题考查了概率的计算,熟练掌握概率的计算公式是

18、解题的关键5、12【分析】根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题【详解】解:由题意知摸到黄色球的频率稳定在40%,所以摸到白色球的概率:1-40%=60%,因为不透明的布袋中,有黄色、白色的玻璃球共有20个,所以布袋中白色球的个数为2060%=12(个),故答案为:12【点睛】本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键三、解答题1、(1);(2)【分析】(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概

19、率公式即可得出结果;(2)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果【详解】解:(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),则甲同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:;(2) 画树状图如图所示:共有种等可能的结果,其中有一天是星期二的结果有种,甲同学随机选择两天,其中有一天是星期二的概率为;【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中

20、选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率2、(1) ;(2)【分析】(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.【详解】解:(1)由题意列表,ABCDAA,AA,BA,CA,DBB,AB,BB,CB,DCC,AC,BC,CC,DDD,AD,BD,CD,D由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,所以甲、乙都选择(窗花剪纸)课程的概率为.(2)由(1)图表可知共有16种等可能的情况数

21、,其中甲、乙选择同一门课程的情况数为4种,所以甲、乙选择同一门课程的概率为.【点睛】本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键用到的知识点为:概率=所求情况数与总情况数之比3、(1);(2)李老师和王老师被分配到同一个监督岗的概率为【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算【详解】解:(1)因为设立了四个“服务监督岗”: “洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,王老师被分配到“就餐监督岗”的概率;故答案为:;(2)画树状图为:由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,李老师和王老师被分配到同一个监督岗的概率【点睛】本题考查了列举法求解概率,列表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率4、(1)9000千克;(2)当售价定为16.5元/千克,日销售量为875千克,理由见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论