




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Discrete Probability DistributionsChapter 5Discrete Probability DistributObjectivesIn this chapter, you learn: The properties of a probability distribution.To compute the expected value and variance of a probability distribution.To compute probabilities from binomial, and Poisson distributions.To us
2、e the binomial, and Poisson distributions to solve business problemsObjectivesIn this chapter, youDefinitionsDiscrete variables produce outcomes that come from a counting process (e.g. number of classes you are taking).Continuous variables produce outcomes that come from a measurement (e.g. your ann
3、ual salary, or your weight).DefinitionsDiscrete variables Types Of VariablesCh. 5Ch. 6Ch. 5Ch. 6Types Of VariablesDiscrete VariableContinuousVariableCh. 5Ch. 6Types Of VariablesCh. 5Ch. 6ChDiscrete VariablesCan only assume a countable number of valuesExamples: Roll a die twiceLet X be the number of
4、times 4 occurs (then X could be 0, 1, or 2 times)Toss a coin 5 times. Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)Discrete VariablesCan only assProbability Distribution For A Discrete VariableA probability distribution for a discrete variable is a mutually exclusive listing of all pos
5、sible numerical outcomes for that variable and a probability of occurrence associated with each outcome.Interruptions Per Day In Computer NetworkProbability00.3510.2520.2030.1040.0550.05Probability Distribution For AProbability Distributions Are Often Represented GraphicallyP(X)0.1012345XPr
6、obability Distributions Are Discrete Variables Expected Value (Measuring Center) Expected Value (or mean) of a discrete variable (Weighted Average)Interruptions Per Day In Computer Network (xi)ProbabilityP(X = xi)xiP(X = xi)00.35(0)(0.35) = 0.0010.25(1)(0.25) = 0.2520.20(2)(0.20) = 0.4030.10(3)(0.10
7、) = 0.3040.05(4)(0.05) = 0.2050.05(5)(0.05) = 0.251.00 = E(X) = 1.40Discrete Variables Expected VaVariance of a discrete variableStandard Deviation of a discrete variablewhere:E(X) = Expected value of the discrete variable X xi = the ith outcome of XP(X=xi) = Probability of the ith occurrence of XDi
8、screte Variables: Measuring DispersionVariance of a discrete variablDiscrete Variables: Measuring Dispersion(continued)Interruptions Per Day In Computer Network (xi)ProbabilityP(X = xi)xi E(X)2xi E(X)2P(X = xi)00.35(0 1.4)2 = 1.96 (1.96)(0.35) = 0.68610.25(1 1.4)2 = 0.16 (0.16)(0.25) = 0.04020.20(2
9、1.4)2 = 0.36 (0.36)(0.20) = 0.07230.10(3 1.4)2 = 2.56 (2.56)(0.10) = 0.25640.05 (4 1.4)2 = 6.76 (6.76)(0.05) = 0.33850.05(5 1.4)2 = 12.96(12.96)(0.05) = 0.6482 = 2.04, = 1.4283Discrete Variables: MeasuringProbability DistributionsContinuous Probability DistributionsBinomialPoissonProbability Distrib
10、utionsDiscrete Probability DistributionsNormalCh. 5Ch. 6Probability DistributionsContiBinomial Probability DistributionA fixed number of observations, ne.g., 15 tosses of a coin; ten light bulbs taken from a warehouseEach observation is categorized as to whether or not the “event of interest” occurr
11、ede.g., head or tail in each toss of a coin; defective or not defective light bulbSince these two categories are mutually exclusive and collectively exhaustiveWhen the probability of the event of interest is represented as , then the probability of the event of interest not occurring is 1 - Constant
12、 probability for the event of interest occurring () for each observationProbability of getting a tail is the same each time we toss the coinBinomial Probability DistributBinomial Probability Distribution(continued)Observations are independentThe outcome of one observation does not affect the outcome
13、 of the otherTwo sampling methods deliver independenceInfinite population without replacementFinite population with replacementBinomial Probability DistributPossible Applications for the Binomial DistributionA manufacturing plant labels items as either defective or acceptableA firm bidding for contr
14、acts will either get a contract or notA marketing research firm receives survey responses of “yes I will buy” or “no I will not”New job applicants either accept the offer or reject itPossible Applications for the The Binomial DistributionCounting TechniquesSuppose the event of interest is obtaining
15、heads on the toss of a fair coin. You are to toss the coin three times. In how many ways can you get two heads?Possible ways: HHT, HTH, THH, so there are three ways you can getting two heads.This situation is fairly simple. We need to be able to count the number of ways for more complicated situatio
16、ns.The Binomial DistributionCounCounting TechniquesRule of CombinationsThe number of combinations of selecting x objects out of n objects is where:n! =(n)(n - 1)(n - 2) . . . (2)(1)x! = (X)(X - 1)(X - 2) . . . (2)(1) 0! = 1 (by definition)Counting TechniquesRule of CoCounting TechniquesRule of Combi
17、nationsHow many possible 3 scoop combinations could you create at an ice cream parlor if you have 31 flavors to select from and no flavor can be used more than once in the 3 scoops?The total choices is n = 31, and we select X = 3.Counting TechniquesRule of CoP(X=x|n,) = probability of x events of in
18、terest in n trials, with the probability of an “event of interest” being for each trial x = number of “events of interest” in sample, (x = 0, 1, 2, ., n) n = sample size (number of trials or observations) = probability of “event of interest” P(X=x |n,)nx!nx(1-)xnx!()!=-Example: Flip a coin four time
19、s, let x = # heads:n = 4 = 0.51 - = (1 - 0.5) = 0.5X = 0, 1, 2, 3, 4Binomial Distribution FormulaP(X=x|n,) = probability of x What is the probability of one success in five observations if the probability of an event of interest is 0.1? x = 1, n = 5, and = 0.1Example: Calculating a Binomial Probabil
20、ityWhat is the probability of oneThe Binomial DistributionExampleSuppose the probability of purchasing a defective computer is 0.02. What is the probability of purchasing 2 defective computers in a group of 10? x = 2, n = 10, and = 0.02The Binomial DistributionExamThe Binomial Distribution Shape 0.2
21、.4.6012345xP(X=x|5, 0.1).2.4.6012345xP(X=x|5, 0.5)0The shape of the binomial distribution depends on the values of and nHere, n = 5 and = .1Here, n = 5 and = .5The Binomial Distribution ShapThe Binomial Distribution Using Binomial Tables (Available On Line)n = 10 x=.20=.25=.30=.35=.40=.45=.500123456
22、789100.10740.26840.30200.20130.08810.02640.00550.00080.00010.00000.00000.05630.18770.28160.25030.14600.05840.01620.00310.00040.00000.00000.02820.12110.23350.26680.20010.10290.03680.00900.00140.00010.00000.01350.07250.17570.25220.23770.15360.06890.02120.00430.00050.00000.00600.04030.12090.21500.25080
23、.20070.11150.04250.01060.00160.00010.00250.02070.07630.16650.23840.23400.15960.07460.02290.00420.00030.00100.00980.04390.11720.20510.24610.20510.11720.04390.00980.0010109876543210=.80=.75=.70=.65=.60=.55=.50 xExamples: n = 10, = 0.35, x = 3: P(X = 3|10, 0.35) = 0.2522n = 10, = 0.75, x = 8: P(X = 8|1
24、0, 0.75) = 0.2816The Binomial Distribution UsinBinomial Distribution CharacteristicsMeanVariance and Standard DeviationWheren = sample size = probability of the event of interest for any trial(1 ) = probability of no event of interest for any trialBinomial Distribution CharacteThe Binomial Distribut
25、ionCharacteristics 012345xP(X=x|5, 0.1).2.4.6012345xP(X=x|5, 0.5)0ExamplesThe Binomial DistributionCharBoth Excel & Minitab Can Be Used To Calculate The Binomial DistributionBoth Excel & Minitab Can Be UsThe Poisson DistributionDefinitionsYou use the Poisson distribution when you are interest
26、ed in the number of times an event occurs in a given area of opportunity.An area of opportunity is a continuous unit or interval of time, volume, or such area in which more than one occurrence of an event can occur. The number of scratches in a cars paintThe number of mosquito bites on a personThe n
27、umber of computer crashes in a day The Poisson DistributionDefinThe Poisson DistributionApply the Poisson Distribution when:You wish to count the number of times an event occurs in a given area of opportunityThe probability that an event occurs in one area of opportunity is the same for all areas of
28、 opportunity The number of events that occur in one area of opportunity is independent of the number of events that occur in the other areas of opportunityThe probability that two or more events occur in an area of opportunity approaches zero as the area of opportunity becomes smallerThe average num
29、ber of events per unit is (lambda)The Poisson DistributionApply Poisson Distribution Formulawhere:x = number of events in an area of opportunity = expected number of eventse = base of the natural logarithm system (2.71828.)Poisson Distribution FormulawhPoisson Distribution CharacteristicsMeanVarianc
30、e and Standard Deviationwhere = expected number of eventsPoisson Distribution CharacterUsing Poisson Tables (Available On Line)X00.400.500.600.700.800.90012345670.90480.09050.00450.00020.00000.00000.00000.00000.81870.16370.01640.00110.00010.00000.00000.00000.74080.22220.03330.00330.00030.00000.00000.00000.67030.26810.05360.00720.00070.00010.00000.00000.60650.3033
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (高清版)DB13∕T 5055-2019 600MPa级高强钢筋混凝土结构应用技术导则
- (高清版)DB13∕T 2944-2019 重力式沉箱码头棱体强夯处理规范
- 2025二手车买卖合同正式版
- 2025天津市企业员工劳动合同示范文本
- 农业产业化发展促进协议
- 2025年长期供货协议合同范本
- 青春的色彩议论文分享(8篇)
- 环境科学城市污染治理答题卡
- 汽车维修与保养技术测试卷设计
- 经济学市场供需分析知识要点
- GB∕T 33917-2017 精油 手性毛细管柱气相色谱分析 通用法
- 高压氧治疗操作规程以及护理常规
- 高中人教物理选择性必修二专题05 单双杆模型-学生版
- 二手车评估作业表简单实际样本
- 人民币小学学具图
- 物资出入库单模板
- 新能源汽车的研究论文
- (完整word版)电梯管理证复审申请表
- 防错系统“红兔子”使用作业指导文件PPT课件
- 北师大版小学数学五年级下册单元测试题含答案(全册)
- 护理技术—鼻饲法课件
评论
0/150
提交评论