版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中数学七年级下册第九章不等式与不等式组章节训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、关于x的方程32x3(k2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A5B2C4D62、已知x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解,则a的取值范围是( )Aa2Ba1C2a1D2a13、(a)和b在数轴上表示的点如图所示,则下列判断正确的是( )Aa1Bba0Ca10Dab04、关于的不等式的解集如图所示,则的值是( )A0BC2D65
2、、不等式的解集在数轴上表示正确的是( )ABCD6、不等式组的解是xa,则a的取值范围是( )Aa3Ba=3Ca3Da37、若成立,则下列不等式成立的是( )ABCD8、下列说法中,正确的是( )Ax3是不等式2x1的解Bx3是不等式2x1的唯一解Cx3不是不等式2x1的解Dx3是不等式2x1的解集9、对于不等式4x+7(x-2)8不是它的解的是( )A5B4C3D210、已知关于x的不等式组的解集中任意一个x的值均不在1x3的范围内,则a的取值范围是()A5a6Ba6或a5C5a6Da6或a5二、填空题(5小题,每小题4分,共计20分)1、已知,则_(填“”“”或“”)2、若关于x的不等式组
3、的整数解共有5个,则a的取值范围_3、若方程组的解满足2x3y1,则k的的取值范围为 _4、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_mg用法用量:口服,每天6090mg,分2-3次服规格:#贮藏:#5、如果ab,那么2a_2b(填“”、“”或“”)三、解答题(5小题,每小题10分,共计50分)1、解不等式组,并求出它的所有整数解的和2、已知关于x的方程的解是非负数,m是正整数,求m的值3、任意一个三位自然数m,如果满足百位上的数字小于十位上的数字,其百位上的数字与十位上的数字之和等于个位上的数字,则称m为“进步数”如果在一个“进步数”m的末尾添加其十位上的数字的2倍,恰
4、好得到一个四位数m,则称m为m的“进步美好数”,并规定F(m)例如m134是一个“进步数”,在134的末尾添加数字326,得到一个四位数m1346,则1346为134的“进步美好数”,F(134)12(1)求F(123)和F(246)的值(2)设“进步数”m的百位上的数字为a,十位上的数字为b,规定K(m)若K(m)除以4恰好余3,求出所有的“进步数”m4、y取什么值时,代数式2y3的值:(1)大于5y3的值?(2)不大于5y3的值?5、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”例如:方程2x60的解为x3,不等式组的解集为2x5因为235
5、所以称方程2x60为不等式组的相伴方程(1)若关于x的方程2xk2是不等式组的相伴方程,求k的取值范围;(2)若方程2x+40,1都是关于x的不等式组的相伴方程,求m的取值范围;(3)若关于x的不等式组的所有相伴方程的解中,有且只有2个整数解,求n的取值范围-参考答案-一、单选题1、C【分析】先求出32x3(k2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k1,则1k3,再由整数k和是整数进行求解即可【详解】解:解方程32x3(k2)得x,方程的解为非负整数,0,把整理得:,由不等式组无解,得到k1,1k3,即整数k0,1,2,3,是整数,k1,3,综上,k1,3,则符
6、合条件的整数k的值的和为4故选C【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解2、A【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围【详解】解:x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解, 且 ,即4(2a+2)0且(a+2)0,解得:a2故选:A【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键3、B【分析】化简(a)a,根据数轴得到a1b0,再结合有理数的加减、不等式的性质逐项分析可得答案【详解】
7、解:(a)a,由数轴可得a1b0,a1,a1,故A选项判断错误,不合题意;b0,b0,ba0,故B正确,符合题意;a1,a+10,故C判断错误,不合题意;ab,a+b0,ab0,故D判断错误,不合题意故选:B【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键4、C【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值【详解】解:解不等式,得 ,由数轴得到解集为x-1, ,解得:a=2,故选C【点睛】本题考查解不等式和不等式解集的数轴表示,解题关键是根据数轴上的表示准确确定不等式的解集5、A【
8、分析】先解不等式,再利用数轴的性质解答【详解】解:解得,不等式的解集在数轴上表示为:故选:A【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键6、D【分析】根据不等式组的解集为xa,结合每个不等式的解集,即可得出a的取值范围【详解】解:不等式组的解是xa,故选:D【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键7、C【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答【详解】解:A、不等式ab两边都乘-1,不
9、等号的方向没有改变,不符合题意;B、不等式ab两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式ab两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为0,当=0时,不等式ab两边都乘,不等式不成立,不符合题意;故选:C【点睛】本题考查了不等式的基本性质不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变8、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立【详解】解:A、当x3时,231,成立,故A符合题意;B、当x3时,231成立,但不是唯一解,例如x4也是不等式的解,故B不符合题意;C、当x3时,231成立
10、,是不等式的解,故C不符合题意;D、当x3时,231成立,是不等式的解,但不是不等式的解集,其解集为:x,故D不符合题意;故选:A【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题9、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x5时,4x+7(x-2)418,当x4时,4x+7(x-2)308,当x3时,4x+7(x-2)198,当x2时,4x+7(x-2)8故知x2不是原不等式的解故A,B,C不符合题意,D符合题意,故选D
11、【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.10、B【分析】根据解不等式组,可得不等式组的解集,根据不等式组的解集是与1x3的关系,可得答案【详解】解:不等式组,得a3xa+4,由不等式组的解集中任意一个x的值均不在1x3的范围内,得a+41或a33,解得a5或a6,故选:B【点睛】本题考查了不等式的解集,利用解集中任意一个x的值均不在1x3的范围内得出不等式是解题关键二、填空题1、【分析】根据不等式性质即可得到答案【详解】解: ,故答案为:【点睛】本题考查不等式性质的应用,解题的关键是掌握不等式性质2、1a0【分析】先求出不等式组的解集,再根据已知条件
12、得出1a0即可【详解】解:,解不等式,得x5,解不等式,得xa,所以不等式组的解集是ax5,关于x的不等式组的整数解共有5个,1a0,故答案为:1a0【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键3、#【分析】将即可得,结合题意即可求得的范围【详解】得, 2x3y1解得故答案为:【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键4、2045【分析】根据602次服用的剂量90,603次服用的剂量90,列出两个不等式组,求出解集,再求出解集的并集即可【详解】解:设一次服用的剂量为xmg,根
13、据题意得;602x90或603x90,解得30 x45或20 x30,则一次服用这种药品的剂量范围是:2045mg故答案为:2045【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键5、【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变【详解】解:ab,ab,2a2b,故答案为:【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键三、解答题1、2x,所有整数解的和是0【解析】【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数【详解】解:解不等式得,x2,解
14、不等式得,x,不等式组的解集是2x,原不等式组的整数解是-2,1,0,1,2,它的所有整数解的和是21+0+1+20【点睛】本题主要考查了一元一次不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值,一般方法是先解不等式组,再根据解集求出特殊值2、m的值为1或2【解析】【分析】先求出方程的解,再由x为非负数,可得到关于 的不等式,解出即可【详解】解:去分母得: ,解得:x,因为x为非负数,所以0,即m2,又m是正整数,所以m的值为1或2【点睛】本题主要考查了方程的解和解一元一次不等式,根据题意得到关于 的不等式是解题的关键3、(1),;(2)【解析】【分析】(1)根据定义F(m)求解
15、即可;(2)根据题意求得,进而根据以及K(m)除以4恰好余3,根据求得的值,进而求得的值【详解】解:(1),根据定义,F(123),则F(246)(2)设,且为正整数则 K(m)除以4恰好余3,则能被4整除即能被4整除,即是整数, 设,即,是的倍数,则是2的倍数或 或则或或综上所述,【点睛】本题考查了二元一次方程组以及一元一次不等式的应用,理解题目中的定义是解题的关键4、(1) y0;(2)y0【解析】【分析】(1)先列不等式,然后解不等式即可,(2)先列不等式,然后解不等式即可【详解】解:(1)由2y-35y-3,解得y0;(2)由2y-35y-3,解得y0【点睛】本题考查列不等式和解不等式,掌握抓住不等关系语言列不等式,和解不等式是解题关键5、(1)3k4;(2)2m3;(3)4n6【解析】【分析】(1)首先求出方程2xk2的解和不等式组的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+40,1的解,然后分m2和m2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组的解集,然后根据题意列出关于n的不等式组求解即可【详解】解:(1)不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年农业项目居间服务合同2篇
- 二零二五年度范文设备租购服务合同2篇
- 二零二五年度集团公司内部子公司间借款合同范本3篇
- 二零二五版花岗石石材行业标准制定与实施合同3篇
- 二零二五年高空玻璃安装与玻璃清洁保养合同3篇
- 二零二五版公司独立董事薪酬及激励合同2篇
- 建筑工地2025年度水电暖供应与安装承包合同2篇
- 基于2025年度市场分析的营销推广合同标的修订3篇
- 二零二五版智能仓储物流设施施工合同协议3篇
- 二零二五年度花卉新品种研发与购销合同3篇
- 《无人机法律法规知识》课件-第1章 民用航空法概述
- 部编人教版六年级下册语文1-6单元作文课件
- NB/T 11434.5-2023煤矿膏体充填第5部分:胶凝材料技术要求
- 2020-2024年安徽省初中学业水平考试中考物理试卷(5年真题+答案解析)
- 手术器械与敷料的传递
- 提高护士手卫生执行率PDCA案例汇报课件(32张)
- 日本人的色彩意识与自然观
- 校园网络系统的设计规划任务书
- 部编版5年级语文下册第五单元学历案
- 建造师建设工程项目管理二局培训精简版课件
- 电工(三级)理论知识考核要素细目表
评论
0/150
提交评论