版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 高三年级数学教案:数的概念的发展1)了解数的概念进展的过程和动力;(2)了解引进虚数单位i的必要性和作用;理解i的性质(3)正确对复数进展分类,把握数集之间的附属关系;(4)了解数系从自然数到有理数到实数再到复数扩大的根本思想 教学建议 1教材分析(1)学问构造首先简明扼要地对已经学过的数集因生产与科学进展的需要而逐步扩大的过程作了概括;然后说明,数集的每一次扩大,对数学学科本身来说,也解决了原有数集中某种运算不是永久可以实施的冲突,使得某些代数方程在新的数集中能够有解。从而引出虚数单位i及其性质,接着,将数的范围扩大到复数,并指出复数后来由于在科学技术中得到应用而进一步进展。从实际生产需要
2、推动数的进展 自然数 整数 有理数 无理数从解方程的需要推动数的进展 负数 分数 无理数 虚数(2)重点、难点分析(一)熟悉数的概念的进展的动力从正整数扩大到整数,从整数扩大到有理数,从有理数扩大到实数,数的概念是不断进展的,其进展的动力来自两个方面。解决实际问题的需要由于计数的需要产生了自然数;为了表示具有相反意义的量的需要产生了整数;由于测量的需要产生了有理数;由于表示量与量的比值(如正方形对角线的长度与边长的比值)的需要产生了无理数(既无限不循环小数)。解方程的需要。为了使方程 有解,就引进了负数;为了使方程 有解,就要引进分数;为了使方程 有解,就要引进无理数。引进无理数后,我们已经能
3、使方程 永久有解,但是,这并没有彻底解决问题,当 时,方程 在实数范围内无解。为了使方程 ( )有解,就必需把实数概念进一步扩大,这就必需引进新的数。(二)留意数的概念在扩大时要遵循的原则第一,要能解决实际问题中或数学内部的冲突。现在要解决的就是在实数集中,方程 无解这一冲突。其次,要尽量地保存原有数集(现在是实数集)的性质,特殊是它的运算性质。(三)正确确熟悉数集之间的关系有理数就是一切形如 的数,其中 ,所以有理数集实际就是分数集“循环节不为0的循环小数也都是有理数”有理数=分数=循环小数,实数=小数自然数集N、整数集Z、有理数集Q、实数集R、复数集C之间有如下的包含关系:2教法建议(1)
4、留意学问的连续性:数的进展过程是漫长的,每一次进展都来自于生产、生活和计算等需要,所以在教学时要留意使学生熟悉到数的进展的两个动力(2)制造良好的课堂气氛:由于本节课要了解扩大实数集的必要性,所以,教师可以多向学生介绍一些数的进展过程中的一些科学史,课堂学习的气氛可以营造成一种师生共同讨论、共同沟通的气氛。 数的概念的进展教学目的1.使学生了解数是在人类社会的生产和生活中产生和进展起来的,了解虚数产生历史过程;2.理解并把握虚数单位的定义及性质;3.把握复数的定义及复数的分类教学重点虚数单位的定义、性质及复数的分类教学难点虚数单位的性质教学过程一、复习引入原始社会,由于计数的需要产生了自然数的
5、概念,随着文字的产生和进展,消失了记数的符号,进而建立了自然数的概念。自然数的全体构成自然数集.为了表示具有相反意义的量引进了正负数以及表示没有的零,这样将数集扩大到有理数集有些量与量之间的比值,如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为解决这种冲突,人们又引进了无理数,有理数和无理数合并在一起,构成实数集数的概念是人类社会的生产和生活中产生和进展起来的,数学理论的讨论和进展也推动着数的概念的进展,数已经成为现代社会生活和科学技术时刻离不开的科学语言和工具二、新课教学(一)虚数的产生我们知道,在实数范围内,解方程 是无能为力的,只有把实数集扩大到复数集才能解决对于复数 (
6、a、b都是实数)来说,当 时,就是实数;当 时叫虚数,当 时,叫做纯虚数可是,历引进虚数,把实数集扩大到复数集可不是件简单的事,那么,历是如何引进虚数的呢?16世纪意大利米兰学者卡当(15011576)在1545年发表的重要的艺术一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”他是第一个把负数的平方根写到公式中的数学家,并且在争论是否可能把10分成两局部,使它们的乘积等于40时,他把答案写成 ,尽管他认为 和 这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两局部,并使它们的乘积等于40给出“虚数”这一名称的是法国数学家笛卡尔(15961650),他在几何学(163
7、7年发表)中使“虚的数与“实的数”相对应,从今,虚数才流传开来数系中发觉一颗新星虚数,于是引起了数学界的一片困惑,许多大数学家都不成认虚数德国数学家菜不尼茨(16641716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它也许是存在和虚妄两界中的两栖物”瑞士数学大师欧拉(17071783)说:“一切形如 , 习的数学式子都是不行能有的,想象的数,由于它们所表示的是负数的平方根对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻”然而,真理性的东西肯定可以经得住时间和空间的考验,最终占有自己的一席之地法国数学家达兰贝尔(171
8、71783)在 1747年指出,假如根据多项式的四则运算规章对虚数进展运算,那么它的结果总是 的形式(a、b都是实数)(说明:现行教科书中没有使用记号 而使用 )法国数学家棣莫佛(16671754)在1730年发觉公式了 ,这就是的探莫佛定理欧拉在 1748年发觉了出名的关系式 ,并且是他在微分公式(1777年)一文中第一次用i来表示-1的平方根,首创了用符号i作为虚数的单位“虚数”实际上不是想象出来的,而它是的确存在的挪威的测量学家未塞尔(17451818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视德国数学家高斯(17771855)在 1806年
9、公布了虚数的图象表示法,即全部实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数 象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”高斯在1831年,用实数组(a,b)代表复数 ,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法直角坐标法和极坐标法加以综合统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数一对应,扩展为平面上的点与复数一对
10、应高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间一对应的关系,阐述了复数的几何加法与乘法至此,复数理论才比拟完整和系统地建立起来了经过很多数学家长期不懈的努力,深刻探讨并进展了复数理论,才使得在数学领域游荡了200年的幽灵虚数揭去了神奇的面纱,显现出它的原来面目,原来虚数不虚呵虚数成为了数系大家庭中一员,从而实数集才扩大到了复数集随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的进展有着极其重要的意义,而且为证明机翼上升力的根本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站供应了重要的理论依据(二)、虚数单位1.规定i叫虚数单位,并规定:(1)(2)实数与它进展四则运算时,原有的加、乘运算律仍旧成立2.形如 ( )的数叫复数,常用一个字母z表示,即 ( )注:(1) ( )叫复数的代数形式;(2)以后说复数 都有 ;(3)a叫复数 ( )的实部记作 ;b叫复数 ( )的虚部,用 表示;(4)全体复数的所成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能工厂安全管理系统采购与实施合同2篇
- 2024版软件版权分配合作合同版B版
- 二零二五年度环保组织与捐赠方之间的环保捐赠合同3篇
- 二零二五年度汽车维修服务常规销售合同2篇
- 二零二五年度网络侵权一次性赔偿合同3篇
- 保健品行业行政后勤工作总结
- 二零二五年度海绵城市建设项目工程合同管理订购协议6篇
- 2025年度绿色二零二五年度绿色食品生产销售合同范本3篇
- 兰州石化职业技术大学《高等程数学》2023-2024学年第一学期期末试卷
- 重庆工程职业技术学院《大学数学Ⅰ微积分》2023-2024学年第一学期期末试卷
- 手术区皮肤消毒及铺单法课件
- 血液科侵袭性真菌的治疗
- 重点专科建设实施方案(四篇)
- 工程合同违约协议书范本
- 排列 教学PPT课件 高中数学
- 公益性岗位开发申请审批表
- 1,2-二氯丙烷安全标签
- 阳离子络合主体
- 儿科课件过敏性紫癜
- 直肠癌临床路径
- 绿化养护工作计划表
评论
0/150
提交评论