




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中数学优秀教案案例 在一年的数学教学任务中,作为初中数学老师的你知道如何写初中数学优秀教案案例吗?来写一篇初中数学优秀教案案例吧,它会对你的教学工作起到不菲的帮助。下面是为大家收集有关于初中数学优秀教案案例,希望你喜欢。 初中数学优秀教案案例1 教学目标: 1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积; 2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,进展学生的空间观念,渗透转化的思想方法,培育学生的分析、综合、抽象、概括和解决实际问题的能力。 3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。 教学重点: 掌
2、握平行四边的面积计算公式,并能正确运用。 教学难点: 把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。 教具准备: 课件、平行四边形纸片、剪刀、直尺、三角板等。 学具准备: 2块平行四边形彩色纸片、三角板、直尺、剪刀 教学过程: 师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。) 一、情境创设,揭示课题 1、创设故事情境 同学们,喜高兴羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块
3、平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢? 2、复习旧知,揭示课题 (1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长宽) (2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来讨论平行四边形面积的计算方法。 二、自主探究,操作沟通 1、大胆猜想 师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法? 师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,仔细数方格)你有什
4、么发现? (两个图形的面积相等,都是18平方米) (知识点) 师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关? (师出示一个平行四边形纸板,生看图猜想。) 生汇报猜想结果,师随机板书。 师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢? 2、操作验证 提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿
5、出手里的学具试试看。 学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的. (师参加到小组活动中,巡视指导。) 3、汇报沟通 师:你是怎样做的呢?谁愿意上来演示并说一说呢? (学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形) 师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。 师:请同学们观察一下,哪种图形的面积我们懂得计算呢? 生:长方形。 师:怎样剪才能拼成长方形呢? 师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧! 生再次操作。 4、发现方法 师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动
6、脑筋想一想这些问题。小组讨论沟通。 (电脑显示思考题) 小组讨论沟通。 (1)平行四边形转化成长方形,面积变了吗? (2)方形后的长和宽分别与平行四边形的底和高有什么关系? (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢? 实物图片展示拼剪过程同时回答上面的讨论题。 学生一边说老师一边板书:长方形面积=长宽 平行四边形面积=底高 (知识点)(能力点) 5、回顾公式推导过程 (1)结合课件演示各部分间的相等关系。 (2)指名说说平行四边形面积公式是怎么样推导出来的? 6、学习用字母表示公式。 师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗
7、?(指名说说,师板书:s=ah) 7、记忆公式 闭上眼睛记记公式。 如果要求平行四边形的面积,必需要知道哪些条件呢? 8、尝试运用 师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样? (出示喜羊羊的草地图)(说明格式要求)学生独立完成。 三、深化运用,加深理解 通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。” 1、算出下列平行四边形的面积 (考查点) 课件出示图形 (羊村长看到小羊们的
8、进步很兴奋,说:“再出几个选择题考考你们吧。”) 2、选一选。(题目见课件) (考查点、能力点) (强调:平行四边形的面积=底底边对应的高) 你有什么结论?(等底等高的两个平行四边形面积相等。) 3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?) (考查点、能力点) 有一块地近似平行四边形,底是15米,高是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜? 四、解决问题,应用拓展 1、小小设计师 羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案? 2、喜羊羊准备在草地的四周围上篱
9、笆,你能帮它算算篱笆长多少米吗? 五、总结全课,提高认识 这节课我们学习了什么知识?是怎么来学会这些知识的? 初中数学优秀教案案例2 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a0)的求根公式的推导,并应用公式法解一元二次方程. 重点 求根公式的推导和公式法的应用. 难点 一元二次方程求根公式的推导. 一、复习引入 1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程 (1)x2=4(2)(x-2)2=7 提问1这种解法的(理论)依据是什么? 提问2这种解法的局限性是什
10、么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.) 2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.) (学生活动)用配方法解方程2x2+3=7x (老师点评)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q的形式,如果q0,方程的根是x=-pq;如果q0,方程无实根. 二、探索新知 用配方法解方程: (1)ax2-7
11、x+3=0(2)ax2+bx+3=0 如果这个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+bax=-ca 配方,得:x2+bax+(b2a)2=-ca+(b2a)2 即(x+b2a)2=b2
12、-4ac4a2 4a20,当b2-4ac0时,b2-4ac4a20 (x+b2a)2=(b2-4ac2a)2 直接开平方,得:x+b2a=b2-4ac2a 即x=-bb2-4ac2a x1=-b+b2-4ac2a,x2=-b-b2-4ac2a 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a,b,c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac0时,将a,b,c代入式子x=-bb2-4ac2a就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解 (4)由
13、求根公式可知,一元二次方程最多有两个实数根. 例1用公式法解下列方程: (1)2x2-x-1=0(2)x2+1.5=-3x (3)x2-2x+12=0(4)4x2-3x+2=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 补:(5)(x-2)(3x-5)=0 三、巩固练习 教材第12页练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握: (1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a0;2)找出系数a,b,c,注意各项的系数包括符号;3
14、)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果. (4)初步了解一元二次方程根的情况. 五、作业布置 教材第17页习题4 初中数学优秀教案案例3 掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法因式分解法解一元二次方程,并应用因式分解法解决一些具体问题. 重点 用因式分解法解一元二次方程. 难点 让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便. 一、复习引入 (学生活动)解下列方程: (1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法) 老师点评:(1)配方法将方程两边同
15、除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解. 二、探索新知 (学生活动)请同学们口答下面各题. (老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式? (学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成: (1)x(2x+1)=0(2)3x(x+2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12. (2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现
16、降次的?) 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1解方程: (1)10 x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2 思考:使用因式分解法解一元二次方程的条件是什么? 解:略(方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是() A.(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7 B.(2-5x)+
17、(5x-2)2=0,(5x-2)(5x-3)=0,x1=25,x2=35 C.(x+2)2+4x=0,x1=2,x2=-2 D.x2=x,两边同除以x,得x=1 三、巩固练习 教材第14页练习1,2. 四、课堂小结 本节课要掌握: (1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用. (2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0. 五、作业布置 教材第17页习题6,8,10,11 初中数学优秀教案案例4 教学目的 1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。 2. 熟识等边三角形的性质及判定. 2.通过例题教学,帮
18、助学生总结代数法求几何角度,线段长度的方法。 教学重点: 等腰三角形的性质及其应用。 教学难点: 简洁的逻辑推理。 教学过程 一、复习巩固 1.叙述等腰三角形的性质,它是怎么得到的? 等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以B=C。 等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此“三线合一”。 2.若等
19、腰三角形的两边长为3和4,则其周长为多少? 二、新课 在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。 等边三角形具有什么性质呢? 1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。 2.你能否用已知的知识,通过推理得到你的猜想是正确的? 等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到A=B=C,又由A+B+C=180,从而推出A=B=C=60。 3.上面的条件和结论如何叙述? 等边三角形的各角都相等,并且每一个角都等于60。 等边三角形是轴对称图形吗?如果是,有几条对称轴? 等边三角形也
20、称为正三角形。 例1.在ABC中,AB=AC,D是BC边上的中点,B=30,求1和ADC的度数。 分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是ABC的顶角平分线,底边上的高,从而ADC=90,l=BAC,由于C=B=30,BAC可求,所以1可求。 问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样? 问题2:求1是否还有其它方法? 三、练习巩固 1.判断下列命题,对的打“”,错的打“”。 a.等腰三角形的角平分线,中线和高互相重合( ) b.有一个角是60的等腰三角形,其它两
21、个内角也为60( ) 2.如图(2),在ABC中,已知AB=AC,AD为BAC的平分线,且2=25,求ADB和B的度数。 3.P54练习1、2。 四、小结 由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。 五、作业: 1.课本P57第7,9题。 2、补充:如图(3),ABC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,EOD的度数。 12.3.2 等边三角形(二) 教学目标 1.掌握等边三角形的性质和判定方法. 2.培育分析问题、解决问题的能力. 教学重点
22、:等边三角形的性质和判定方法. 教学难点:等边三角形性质的应用 教学过程 I创设情境,提出问题 回顾上节课讲过的等边三角形的有关知识 1.等边三角形是轴对称图形,它有三条对称轴. 2.等边三角形每一个角相等,都等于60 3.三个角都相等的三角形是等边三角形. 4.有一个角是60的等腰三角形是等边三角形. 其中1、2是等边三角形的性质;3、4的等边三角形的判断方法. II例题与练习 1.ABC是等边三角形,以下三种方法分别得到的ADE都是等边三角形吗,为什么? 在边AB、AC上分别截取AD=AE. 作ADE=60,D、E分别在边AB、AC上. 过边AB上D点作DEBC,交边AC于E点. 2. 已
23、知:如右图,P、Q是ABC的边BC上的两点,并且PB=PQ=QC=AP=AQ.求BAC的大小. 分析:由已知显然可知三角形APQ是等边三角形,每个角都是60.又知APB与AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得PAB=30. 3. P56页练习1、2 III课堂小结:1.等腰三角形和性质;等腰三角形的条件 V布置作业: 1.P58页习题12.3第ll题. 2.已知等边ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个? 12.3.2 等边三角形(三) 教学过程 一、 复习等腰三角形的判定与性质 二、 新授: 1.等边三角形的性质:
24、三边相等;三角都是60;三边上的中线、高、角平分线相等 2.等边三角形的判定: 三个角都相等的三角形是等边三角形;有一个角是60的等腰三角形是等边三角形; 在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半 注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系. 3.由学生解答课本148页的例子; 4.补充:已知如图所示, 在ABC中, BD是AC边上的中线, DBBC于B, ABC=120o, 求证: AB=2BC 分析
25、 由已知条件可得ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了. 初中数学优秀教案案例5 教学目标 1、使学生能说出有理数大小的比较法则 2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。 3、能正确运用符号写出表示推理过程中简单的因果关系。 三、教学重点与难点 重点:运用法则借助数轴比较两个有理数的大小。 难点:利用绝对值概念比较两个负分数的大小。 四、教学准备 多媒体课件 五、教学设计 (一)沟通对话,探究新知 1、说一说 (多媒体显示)某一天
26、我们5个城市的最低气温从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10比上海的最低气温0高,有些学生会说哈尔滨的最低气温零下20比北京的最低气温零下10低等;不会说的,老师适当点拔,从而学生在合作沟通中不知不觉地完成了以下填空。 比较这一天下列两个城市间最低气温的高低(填高于或低于) 广州_上海;北京_上海;北京_哈尔滨;武汉_哈尔滨;武汉_广州。 2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么? (3)温度的高低与相应的数在数轴上的位置有什么? (通过学生自己动手操
27、作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。老师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,老师归纳得出结论: 在数轴上表示的两个数,右边的数总比左边的数大。 正数都大于零,负数都小于零,正数大于负数。 (二)应用新知,体验成功 1、练一练(师生共同完成例1后,学生完成随堂练习1) 例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用号连接。(师生共同完成) 分析:本题意有几层含义?应分几步? 要点总结:小组讨论归纳,本题解题时的一般步骤:画数轴描点;有序排列;不等号连接。 随堂练习: P19 T1 2、做一做 (1)在数轴上表示下列各对数,并比较它们的大小 2和7-6和-1-6和-36-和-1.5 (2)求出图中各对数的绝对值,并比较它们的大小。 (3)由、从中你发现了什么? (学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培育学生观察、归纳、用数学语言表达数学规律的能力。) 要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 协助家长办年货课件
- 健康素养促进课件
- 合肥科学实验班数学试卷
- 河南省初三数学试卷
- 健康管理电教课件
- 2025-2030年中国手帕袋项目投资可行性研究分析报告
- 乌鲁木齐市第七十七小学-企业报告(业主版)
- 2025年中国电路保护元器件行业发展监测及投资战略规划研究报告
- 中国披萨连锁店行业发展趋势预测及投资战略咨询报告
- 2025年中国太阳能硅片硅锭行业发展监测及投资战略研究报告
- 德勤:2025“十五五”时期中国能源行业关键议题报告
- 挖掘机安全操作规程完整版
- 2024年上海市教育评估院招聘笔试真题
- 2025年淮南新东辰控股集团有限责任公司招聘笔试参考题库含答案解析
- 【正版授权】 ISO 13408-1:2023 EN Aseptic processing of health care products - Part 1: General requirements
- 蒋诗萌小品《谁杀死了周日》台词完整版
- 肥胖患者护理查房
- 职业暴露针刺伤应急预案演练脚本-
- 土地革命时期课件
- 组织知识清单
- 海德堡保养细则
评论
0/150
提交评论