空间向量知识点归纳总结_第1页
空间向量知识点归纳总结_第2页
空间向量知识点归纳总结_第3页
空间向量知识点归纳总结_第4页
空间向量知识点归纳总结_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、空间向量与立体几何知识点归纳总结一知识要点。空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。(2)向量具有平移不变性空间向量的运算。定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。mr uur Uur r v uur uur mr r r 岫7 r .OB = OA + AB = a + b BA = OA - OB = a - b OP = *a(*G R)运算律:加法交换律:a+ b b a,叱只a a. 3 a 加法结合律:(a+b a+c=a+(a+c 数乘分配律:X(a + b)=

2、渍+ Xb运算法则:三角形法则、平行四边形法则、平行六面体法则共线向量。如果表示空间向量的少向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行 向量,a平行于b,记作“。qPPPqPQP共线向量定理:空间任意两个向量a、b ( b丰0 ),a/b存在实数人,使a =人b。三点共线:A、B、C三点共线AB = X ACOC= xOA+ yOB其中x+y=1) TOC o 1-5 h z a土 a(4)与共线的单位向量为a共面向量(1)定义:一般地,能平移到同一平面的向量叫做共面向量。说明:空间任意的两向量都是共面的。r rrr rX yr (2?共面向量定理:如果两个向量a,b不共线,

3、p与向量a,b共面的条件是存在实数/使p = xa + yb(3)四点共面:若A、B、C、P四点共面。砂=XAB + yACOP = xOA + yOB + zOC (其中 x + y + z = 1) r r rr HYPERLINK l bookmark25 o Current Document a, b, cp空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一rrr_r 的有序实数组,z,使p=球+yb+zc。 r r rr f r若三向量 不共面,我们把a,bc叫做空间的一个基底,abc叫做基向量,空间任意 三个不共面的向量都可以构成空间的一个基底。 x y z U

4、U论:诜时,B勺是不共面的里点,则对空间任一点P,都存在唯一的三个有序实数 OP = xOA + yOB + zOC 使。空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系 xyz中,对空间任一点A,存在唯一的有序实数组(x, y z),使, .A - xi + yi + zk,有序实数组(x,y,z)叫作向量A在空间直角坐标系 O-xyz中的坐标,记作 A(x, y,z) ,x叫横坐标,y叫纵坐标,z叫竖坐标。注:点A(x,y,z)关于x轴的的对称点为(x,-y,-z),关于xoy平面的对称点为(x,y,-z).即点关 于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。

5、在y轴上的点设为(0,y,0),在平面yOz 中的点设为(0,y,z)r r r(2)若空间的一个基底的三个基向量互相垂直且长为i,这个基底叫单位正交基底,用i k表 a = xl + yj + zk(3%空间向量的直角坐标运算律:若 (3%空间向量的直角坐标运算律:若 a = (a,a , a ),b = (b ,b ,b ),* r 12 3123a 一 b = (a 一 b , a 一 b , a 一 b ) r r 112233a-b = ab + a b + a b r r 1 12 23 3 ,a / b = a = Xb , a = Xb ,a b。ab + a b + a b

6、= 0_o1 12 23 3若 A(x , y , z ),B(x , y , z ),若1 1 1222r ra + b = (a + b , a + b , a + b ) 则 r 11 22 33=人b (人e R) 3,uur则 AB = (x=人b (人e R) 3,uur则 AB = (x2-xy2一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。AP = k PB,则点P坐标为定比分点公式:若AR顼1AP = k PB,则点P坐标为,x +Xx y +Xy z + Xz (12,12,12 )设 P ( x,y,z )则(1+ X , 1+ X ,

7、 1+ X )设 P ( x,y,z )则(xx1 yy1, zz1)= (x2 x, y2 y, z2 z) TOC o 1-5 h z x +x y + y z + zP ( 12 , 12 , 12 )22P坐标为AABC中, A(x , y ,z) ,B(x , y ,z ),C(x , y ,zP坐标为111222333 ,三角形重心x + x + x y + y + y z + z + z、P ( 123,123 , 123 )322、ABC的五心:AP = x (心P:AP = x (心P:切圆的圆心,角平分线的交点。aB aC.+aBAC)(单位向量)PAPA = P = PC

8、外心P:外接圆的圆心,中垂线的交点。 *垂号:高的交点:PA PB=PA PC=PB PC (移项,积为0,则垂直)1-重心P:中线的交点,三等分点(中位线比)AP = 3(AB + AC)中心:正三角形的所有心的合一。r(4)中心:正三角形的所有心的合一。r(4)模长公式:若 a = (a ,a ,a ),b = (b ,b ,b )r1 2 31_ 2 3 _则* 1 a |=1 2rI b 1=a - a = : a 2 + a 2 + a 2 12 r r.r r a - b(5)夹角公式:g,a-气=*,2 + b 2 + b2a b + a b + a b1 12 23 3 ABC

9、中AB AC 0 A为锐角aB aC 0 A为钝角,钝角(6)两点间的距离公式:若A(x ,y ,z ),B(x ,y ,z ), TOC o 1-5 h z uur e ,23*123 1 1 2 223*123则 I AB I= AB2 = (x x )2 + (y y )2 + (z z )2 ,*212121或 d = J(x x )2 + (y y )2 + (z z )2A, B、 212121空间向量的数量积。uur r uur r空间向量的夹角及其表示:已知两非零向*, r,在空间任取一点o,作0A=a, ob=b 则ZAOB叫做向量a与b的夹角,记作 ;且规定0 K ,显然有

10、L flr r 兀 一 r_rr r= ;若=,则祢a与b互相垂直,记作:a b。uur r 2uurrr向量的模:设OA = a,则有向线段OA的长度叫做向量a的长度或模,记作:I a I。r rrr 一r r向量的数量积:已知向量a,b,则1 a I I b I COS 叫做a,b的数量积,记作a -b,r r r _rx 即 a - b = I a I -1 b I - cos。(4)空间向量数量积的性质: r r r r r r r r r rr a - e =I a I cos a 上 b 0 a *b 0(5) r间宣量数量积r算律:r r r r r(Xa).b =X(d * b

11、) a * (人b)。 a * b b * a (交换律”r r rr r r ra *(b +Q = a *b + a *、分配律)。(a * b)c 壬 a(b * c)不满足乘法结合率:v二空间向量与立体几何1 线线平行两线的方向向量平行1线面平行线的方向向量与面的法向量垂直2面面平行0两面的法向量平行2线线垂直(共面与异面)0两线的方向向量垂直1线面垂直0线与面的法向量平行2面面垂直0两面的法向量垂直 3线线夹角0 (共面与异面)0。,90。 0两线的方向向量n, n 2的夹角或夹角的补角,coso = cos 1线面夹角0 0。,90。:求线面夹角的步骤:先求线的方向向量AP与面的法

12、向量n的夹角,若为sin o = cos 锐角角即可,若为钝角,则取其补角;再求其余角唧是线面的夹角.2面面夹角(二面角)0 。,180。:若两面的法向量一进一出,则二面角等于两法向量ni,n2的夹角;法向量同进同出,则二面角等于法向量的夹角的补角CS -COS uuu4 点面距离h :求点P(x ,y )到平面a的距离:在平面a上去一点Q(x,yJ,得向量PQ .;计算1线面距离(线面平行):转化为点面距离2面面距离(面面平行):转化为点面距离【典型例题】1 基本运算与基本知识()例k已知平行六面体牌%时ffip,化简下列向量表达式,标出化简结果的向量。 AB + BC ; AB + AD

13、+ AA ;uur uur 1 uurnr1 uun umr uuur AB + AD + CC ; 3(AB + AD + AAf)。例2r对空间任萨和不共线的三点A,BC,问满足向量式:OP = xOA + yOB + zOC (其中 x + y + z = 1 )的四点 P, A,B,C 是否共面?例 3 已知空间三点。,2,3),B(-2,1,6),C(1,-1,5)o求以向量AB, AC为一组邻边的平行四边形的面积S; ruuur uuirr .r若向量a分别与向量AB, AC垂直,且| a | =、3,求向量a的坐标。2基底法(如何找,转化为基底运算)3坐标法(如何建立空间直角坐标

14、系,找坐标)4 几何法编号03晚自习测试;17,18题例 4.如图,在空间四边形OABC 中,OA = 8,AB = 6,AC = 4,BC = 5,ZOAC = 45。,ZOAB = 60。, 求OA与BC的夹角的余弦值。uunr umruunr umr说明:由图形知向量的夹角易出错,如 OA, AC= 135o易错写成 OA, AC= 45。,切记!例5.长方体ABCD - A B C D中,AB = BC = 4,E为A C与B D的交点,F为BC与B C的交点,又AF BE,求长方体的高BB,。111【模拟试题】1.已知空间四边形ABCD ,连结AC,BD,设M,G分别是BC,CD的中点,化简下列各表达式,并标 uuur uur uur出化简结果向量:(1)AB + BC + CD ;uur i uur uurumr 1 uur umr(2)AB + CBD + BC) ;(3)AG-(AB + AC)。2.已知平行四边形ABCD,从平面AC外一点O引向量。uur uur unllui uur lur mu uuiOE = kOA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论