高考大题-概率与统计课件_第1页
高考大题-概率与统计课件_第2页
高考大题-概率与统计课件_第3页
高考大题-概率与统计课件_第4页
高考大题-概率与统计课件_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、规范答题强化课(六)高考大题概率与统计规范答题强化课(六)类型一 有关统计、统计案例的计算问题【真题示范】(12分)(2017全国卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图所示:类型一 有关统计、统计案例的计算问题高考大题概率与统计课件(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50kg”,估计A的概率; (1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量

2、与养殖方法有关:箱产量50 kg箱产量50 kg旧养殖法新养殖法(2)填写下面列联表,并根据列联表判断是否有99%的把握认(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值 (精确到0.01).附:P(K2k0)0.0500.0100.001k03.8416.63510.828(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的【联想解题】看到估计A的概率,想到利用公式P(A)=P(B)P(C)求概率,并明确概率等于相应小长方形面积和.看到填写列联表,想到根据公式K2= 计算K2值,K2值越大,说明“两个变量有关系”的可能性越大.【联想解题】看到中位数的估计值,想到根据

3、中位数的定义,中位数在直方图中左、右两侧的频率都是0.5,由此列式求解. 看到中位数的估计值,想到根据中位数的定义,中位数在直方图中【标准答案】规范答题 分步得分(1)记B表示事件“旧养殖法的箱产量低于50 kg”, C表示事件“新养殖法的箱产量不低于50 kg”.由题意知P(A)=P(B)P(C),1分 得分点【标准答案】规范答题 分步得分旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)5=0.62, 故P(B)的估计值为0.62.2分 得分点新养殖法的箱产量不低于50 kg的频率为(0.068+0.046+0.010+0.008)5=0.

4、66,故P(C)的估计值为0.66.3分 得分点旧养殖法的箱产量低于50 kg的频率为因此,事件A的概率估计值为0.620.66=0.4092.4分 得分点因此,事件A的概率估计值为0.620.66=0.4092.(2)根据箱产量的频率分布直方图得列联表6分 得分点箱产量50 kg箱产量50 kg旧养殖法6238新养殖法3466(2)根据箱产量的频率分布直方图得列联表箱产量6.635,故有99%的把握认为箱产量与养殖方法有关.8分 得分点K2的观测值k0= 1(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg的直方图面积为(0.004+0.020+0.044)5=0.340.5,

5、10分 得分点(3)因为新养殖法的箱产量频率分布直方图中,箱产量故新养殖法箱产量的中位数的估计值为50+ 52.35(kg).12分 得分点 故新养殖法箱产量的中位数的估计值为50+ 52.3【评分细则】正确写出公式P(A)=P(B)P(C)得1分.计算出P(B)得1分.计算出P(C)得1分.正确得出结果得1分,计算结果错误不得分.【评分细则】填写列联表全部正确得2分,错误一个不得分.计算出K2结果正确得1分,只写出公式不得分.得出结论正确得1分.计算出箱产量低于50 kg的直方图面积为0.34得1分.计算出箱产量低于55 kg的直方图面积为0.68得1分.计算出本题最终结论得2分.填写列联表

6、全部正确得2分,错误一个不得分.【名师点评】1.核心素养:频率分布直方图及独立性检验是高考命题的重点,在每年的高考试题都以不同的命题背景进行命制.此类问题主要考查考生的分析问题和解决实际问题的能力,同时考查“数据分析”的数学核心素养.【名师点评】2.解题引领:(1)在频率分布直方图中,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和;中位数的估计值,应使中位数左右两边的直方图面积相等;最高小长方形的中点所对应的数据值即为这组数据的众数.2.解题引领:(2)独立性检验仅限于22的列联表,收集数据是解题的关键,在利用统计变量K2进行独立性检验时,应该注意数值的准确代

7、入和正确计算.(2)独立性检验仅限于22的列联表,收集数据是解题的关键,类型二 概率与统计、离散型随机变量及其分布列的综合问题【真题示范】(12分)(2017全国卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与类型二 概率与统计、离散型随机变量及其分布列的当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得

8、下面的频数分布表:当天最高气温(单位:)有关.如果最高气温不低于25,需求量最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.最高气温10,15)15,20)20,25)25,3(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值? (1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.【联想解题】 看到需求量X的分布列,想到依据题目中的信息确定X的取

9、值.看到求进货量n使Y的数学期望达到最大值,想到利用期望公式,列出关于进货量n的函数关系式,由函数的单调性求解. 【联想解题】 【标准答案】规范答题 分步得分(1)由题意知,X的所有可能取值为200,300,500,1分 得分点由表格数据知P(X=200)= =0.2,P(X=300)= =0.4,P(X=500)= =0.4.4分 得分点【标准答案】规范答题 分步得分因此X的分布列为6分 得分点X200300500P0.20.40.4因此X的分布列为X200300500P0.20.40.4(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑 200n500,当300n

10、500时,若最高气温不低于25,则Y=6n-4n=2n,若最高气温位于区间20,25),则Y=6300+2(n-300)-4n=1 200-2n;(2)由题意知,这种酸奶一天的需求量至多为500,若最高气温低于20,则Y=6200+2(n-200)-4n=800-2n;7分 得分点因此E(Y)=2n0.4+(1 200-2n)0.4+(800-2n) 0.2=640-0.4n.8分 得分点当200n300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,若最高气温低于20,则Y=6200+2(n-200)-4n=800-2n;9分 得分点因此E(Y)=2n(0.4+0.4)

11、+(800-2n)0.2=160+1.2n,10分 得分点所以n=300时,Y的数学期望达到最大值,最大值为520元.12分 得分点 若最高气温低于20,【评分细则】正确写出X所有可能取值得1分.求出随机变量对应的概率值,每个1分.写出随机变量的分布列得2分.正确写出在300n500时的各关系式得1分.【评分细则】正确写出在300n500时E(Y)=640-0.4n得1分.正确写出在200n300时的各关系式得1分.正确写出在200n300时E(Y)=160+1.2n得1分.得出n=300时,Y的数学期望达到最大值,并求出最大值得2分.正确写出在300n500时E(Y)=640-0.4n得【名师点评】1.核心素养:(1)与统计相结合考查概率及离散型随机变量分布列的求法.(2)以现实生活为背景,考查概率、相互独立事件、互斥事件、离散型随机变量的分布列与期望值等.【名师点评】2.解题引领:(1)写全得分步骤:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写全.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论