版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.2.1排列(一)1.2.1排列(一)创设情境,引出排列问题探究 在1.1节的例9中我们看到,用分步乘法计数原理解决这个问题时,因做了一些重复性工作而显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?创设情境,引出排列问题探究探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?上面两个问题有什么共同特征?可以用怎样的数学模型来刻画?探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其探究:问题1:从甲、乙、丙3名同
2、学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?分析:把题目转化为从甲、乙、丙3名同学中选2名,按照参加上午的活动在前,参加下午的活动在后的顺序排列,求一共有多少种不同的排法? 探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其上午下午相应的排法甲乙丙乙甲丙丙甲乙甲丙甲乙乙甲乙丙丙甲丙乙第一步:确定参加上午活动的同学即从3名中任 选1名,有3种选法.第二步:确定参加下午活动的同学,有2种方法根据分步计数原理:32=6 即共6种方法。上午下午相应的排法甲乙丙乙甲丙丙甲乙甲丙甲乙乙甲乙丙丙甲丙乙把上面问题中被取的对象叫做元素,于是问题就可
3、以叙述为: 从3个不同的元素a,b,c中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?ab, ac, ba, bc, ca, cb把上面问题中被取的对象叫做元素,于是问题就可以叙述为: 问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数? 从4个不同的元素a,b,c,d 中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc;cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.有此可
4、写出所有的三位数:123,124,132,134,142,143; 213,214,231,234,241,243,312,314,321,324,341,342; 412,413,421,423,431,432。问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位基本概念1、排列:一般地,从n个不同中取出m (m n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。说明:1、元素不能重复。n个中不能重复,m个中也不能重复。2、“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。3、两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的
5、排列顺序也完全相同。4、mn时的排列叫选排列,mn时的排列叫全排列。5、为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图”。基本概念1、排列:一般地,从n个不同中取出m (m 2、排列数: 从n个不同的元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同的元素中取出m个元素的排列数。用符号 表示。“排列”和“排列数”有什么区别和联系?排列数,而不表示具体的排列。所有排列的个数,是一个数;“排列数”是指从个不同元素中,任取个元素的所以符号只表示“一个排列”是指:从个不同元素中,任取按照一定的顺序排成一列,不是数;个元素2、排列数: 从n个不同的元素中取出m(mn)个元素问题中是求
6、从个不同元素中取出个元素的排列数,记为 ,已经算得问题2中是求从4个不同元素中取出3个元素的排列数,记为,已经算出探究:从n个不同元素中取出2个元素的排列数 是多少?呢?呢? 第1位第2位第3位第m位n种(n-1)种(n-2)种(n-m+1)种问题中是求从个不同元素中取出个元素的排列数,记为 (1)排列数公式(1):当mn时,正整数1到n的连乘积,叫做n的阶乘,用 表示。n个不同元素的全排列公式:(2)排列数公式(2):说明:1、排列数公式的第一个常用来计算,第二个常用来证明。为了使当mn时上面的公式也成立,规定:2、对于 这个条件要留意,往往是解方程时的隐含条件。(1)排列数公式(1):当m
7、n时,正整数1到n的连乘积,叫例1、某年全国足球甲级A组联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解:14个队中任意两队进行1次主场比赛与1次客场比赛,对应于从14个元素中任取2个元素的一个排列,因此,比赛的总场次是例2:(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法? (2)有5种不同的书,买3本送给3名同学,每人各1本,共有多少种不同的送法?例1、某年全国足球甲级A组联赛共有14个队参加,每队要与其余例3:某信号兵用红,黄,蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信
8、号,一共可以表示多少种不同的信号?例4:用0到9这10个数字,可以组成多少个没有重复数字的三位数?百位十位个位解法一:对排列方法分步思考。从位置出发例3:某信号兵用红,黄,蓝3面旗从上到下挂在竖直的旗杆上表示解法二:对排列方法分类思考。符合条件的三位数可分为两类:百位十位个位0百位十位个位0百位十位个位根据加法原理从元素出发分析解法三:间接法.从0到9这十个数字中任取三个数字的排列数为 , 所求的三位数的个数是其中以0为排头的排列数为 . 逆向思维法解法二:对排列方法分类思考。符合条件的三位数可分为两类:百位百位十位个位千位万位例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于5
9、0000的偶数共有多少个?有约束条件的排列问题百位十位个位千位万位例5:由数字1、2、3、4、5组成没有重百位十位个位千位万位例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?有约束条件的排列问题百位十位个位千位万位例5:由数字1、2、3、4、5组成没有重有约束条件的排列问题例6:6个人站成前后两排照相,要求前排2人,后排4人,那么不同的排法共有( )A.30种 B. 360种 C. 720种 D. 1440种 C例7:有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间; (2)男甲不在排头,女乙不在排尾;(3)三个女生排
10、在一起;(4)三个女生两两都不相邻;(5)全体站成一排,甲、乙、丙三人自左向右顺序不变;(6)若甲必须在乙的右边(可以相邻,也可以不相邻),有多少种站法?对于相邻问题,常用“捆绑法”对于不相邻问题,常用 “插空法”有约束条件的排列问题例6:6个人站成前后两排照相,要求前排2例8、三个女生和五个男生排成一排,以下各有多少种不同的排法?女生必须全排在一起女生必须全分开两端都不能排女生两端不能都排男生例8、三个女生和五个男生排成一排,以下各有多少种不同的排法?练习:某小组7人排队照相,以下各有几种不同的排法?1)若排成两排,前排3人,后排4人;2)若排成两排,前排3人,后排4人,甲必排在前排,乙必排在后排;3)甲不在左端,乙不在右端;4)甲乙不相邻;5)甲、乙、丙均不相邻;6)甲乙必须间隔2人;练习:某小组7人排队照相,以下各有几种不同的排法?3)甲不在例1、解方程:例2、求 的值.例1、解方程:例2、求 的值.1,2答案3.4答案1,2答案3.4答案高中数学排列课件2高中数学排列课件2。 例证明: 。 证明:右边。 例证明: 。 证明:右边 排列问题,是取出m个元素后,还要按一定的顺序排成一列,取出同样的m个元素,只要排列顺序不同,就视为完成这件事的两种不同的方法(两个不同的排列)小结 由排列的定义可知,排列与元素
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国十二/十四烷基二甲基叔胺数据监测研究报告
- 2025至2030年中国侧双刃不干胶硬刀数据监测研究报告
- 2025年中国小型自动灌装机市场调查研究报告
- 迷宫课程设计课程摘要
- 2025年度高压油气管道维护劳务承包合同规范文本
- 2025年度独家授权经销合同-XX健身器材区域独家代理
- 2025年度驾校与汽车租赁公司合作自驾游培训协议
- 2025年度屋顶光伏租赁与并网服务合同
- 二零二五年度车牌转让法律效力确认协议
- 二零二五年度房屋租赁纠纷预防与专业处理合同
- MOOC 有机化学(上)-北京师范大学 中国大学慕课答案
- 五年级上册脱式计算100题及答案
- 读书会熵减华为活力之源
- 二年级上学期数学
- GB/T 3098.5-2000紧固件机械性能自攻螺钉
- 康佳液晶电视企业文化(课堂PPT)
- 个人养老金:是什么、怎么缴、如何领PPT个人养老金基础知识培训PPT课件(带内容)
- 鸡鸭屠宰生产企业安全风险分级管控资料
- 离子色谱法分析氯化物原始记录 (1)
- 高等数学说课稿PPT课件(PPT 49页)
- 造影剂肾病概述和性质
评论
0/150
提交评论