疲劳裂纹扩展_第1页
疲劳裂纹扩展_第2页
疲劳裂纹扩展_第3页
疲劳裂纹扩展_第4页
疲劳裂纹扩展_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、疲劳裂纹扩展不锈钢304L的疲劳裂纹扩展模拟Feifei Fan, Sergiy Kalnaus, Yanyao Jiang(美国内华达大学机械工程学院)摘 要:一个基于最近发展的疲劳方法的实验用来预测不锈钢304L的裂纹扩 展。这种疲劳方法包括两个步骤:(1)材料的弹塑性有限元分析;(2)多轴疲劳标 准在基于有限元分析的可输出的拉伸实验的裂纹萌生与扩展预测中的应用。这种有限 元分析具有这样的特点:能够实现在先进循环塑性理论下扑捉材料在常幅加载条件下 重要的循环塑性行为。这种疲劳方法是基于这样的理论:当累计疲劳损伤达到一个特定 值时材料发生局部失效,而且这种理论同样适用于裂纹的萌生与扩展。所以

2、,一组材 料特性参数同时用来做裂纹的萌生与扩展预测,而所有的材料特性参数都是由平滑试 样试验产生。这种疲劳方法适用于I型紧凑试样在不同应力比和两步高低加载顺序下 等幅加载的裂纹扩展。结果显示,这种疲劳方法能够合理的模拟在试验上观察到的裂 纹扩展行为,包括刻痕影响、应力比的影响和加载顺序的影响。另外,这种还方法能 够模拟从刻痕到早期的裂纹扩展和疲劳全寿命,而且预测的结果和试验观察的结果吻 合得很好。关键词:累计损伤;疲劳裂纹扩展;疲劳标准1 .简介工程承压设备经常承受到循环加载,一般说来,疲劳过程有三个阶段组成:裂纹萌 生和早期裂纹扩展、稳定裂纹扩展和最后的疲劳断裂。裂纹扩展速率da /dN通常

3、被表 示为重对数图尺在应力强度因素范围上的一个功能。在常幅加载下,不同应力比时稳 定的裂纹扩展结果通常服从Paris公式和其修正公式。常幅疲劳加载下不同材料的行 为不同。有些材料表现为应力比的影响:在相同应力比时,裂纹扩展速率曲线一致, 但是,应力比增大时,裂纹扩展速率也增大。而其他金属材料没有表现出任何应力比 的影响,而且在恒幅加载其裂纹扩展速率曲线在重对数图纸上重合。在变幅加载条件下疲劳裂纹扩展行为作为另一个课题已经研究了若干年了。过载 和变幅加载的应用对疲劳裂纹扩展研究产生了重大的影响。对于大多数金属材料而言, 上述加载方法的应用导致疲劳裂纹扩展速率减慢。基于线弹性断裂力学的理论,这种

4、过渡行为经常使用应力强度因子和通过引入在稳定裂纹扩展状态下的Paris公式的修 正因子来模拟。这种模型在1972年被Wheeler引人,并且可以被视为处理变幅加载影 响的可行方法。若干针对在变幅加载条件下不同材料的特定形状的裂纹扩展曲线 Wheeler修正模型已经提出。这些模型很少或者没有物理基础,而为了获得一组合适 的常量来校准这些模型需要裂纹扩展试验的结果。自从这种模型在1970年被Elber引进,裂纹闭合理论经常用来解释裂纹扩展 行为。这种由单轴拉伸过载产生的裂纹扩展速率的减慢在Elber的后来的研究中可以 用裂纹闭合理论来解释。Kop理论是作为在裂纹开放加载下一个相应的应力强度因子 引

5、进的,这种从Kop到Kmax的有效应力强度因子被认为是裂纹的起裂参数。因此,裂 纹扩展与总应力强度因子的一部分有关,当裂纹起裂时这部分对应于循环的一部分。 这种方法用来解释应力比和变幅加载的影响。然而,这种基于实验观察和数值模拟为 基础裂纹闭合方法正遭受批评。裂纹尖端的钝化已被用来解释裂纹扩展。这种由于过载引起的扩展速率减慢只要 归因于在裂纹尖端前端的压缩残余应力或在裂纹尖端末端由于塑性引起的裂纹闭合, 或者是二者的共同作用。在过载条件下立即发生的裂纹扩展早期加速是由于裂纹尖端 钝化引起的拉伸残余应力的结果。这种有限元分析方法被用来分析应力分布和与变幅 加载影响有关的裂纹张开位移。一般来说,疲

6、劳裂纹是一个由于应力集中在刻痕的成核。这种在短裂纹扩展行 为中所谓的缺口效应存在而且裂纹扩展速率也许比基于稳定扩展的预期或高或低。关 于从缺口的裂纹萌生和早期的裂纹扩展行为已经进行了广泛的研究。在缺口四周存在 一个过渡区,在这个区域里疲劳裂纹扩展速率可能减速、加速或者不变。为了模拟缺 口短裂纹扩展行为,试验主要集中在缺口附近的有效应力强度因子、缺口尖端塑性和 缺口尖端循环塑性与接触表面裂纹的组合。最近的一个试验中Jiang和他的合作者尝试去使用多轴疲劳标准去统一预测裂 纹的萌生和扩展。这个观点的意思是裂纹的萌生和随后的裂纹扩展都服从同一种疲劳 标准。当累计疲劳损伤达到一个特定的临界值时材料的屈

7、服点就会形成裂纹。这种方 法已经在1070钢上成功应用,在据方向变化加载下,对从缺口发展的早期裂纹扩展、 稳定裂纹扩展、过载影响、应力比的影响的预测结果与试验观察结果吻合。所有的裂 纹扩展预测都是基于从测试光滑试样产生的材料常量。在目前的研究中,上述的方法用来模拟缺口试样的裂纹扩展,这种试样由 AISI304L奥氏体不锈钢构成。缺口对早期裂纹扩展的影响、应力比的影响以及加载顺 序的影响已经被模拟了,应力分析通过采用有限元分析方法建立一个强大的循环塑性 模型来进行。预测的结果用来与裂纹扩展试验的结果对比。2.裂纹扩展模拟在目前的研究中,由Jiang和他的合作者开发的疲劳方法被用来模拟304L不锈

8、 钢的裂纹扩展。这种方法这种假设:当在主物质位面上的累计疲劳损伤达到一个临界 值,内点发生屈服。在主物质位面上的内点会形成新的表面裂纹。实质上,这种方法 包括两个主要计算步骤:一个构件的任何内点的应力应变的测定所进行的弹塑性有限元应力分析。多轴疲劳标准的应用利用从上一步对裂纹萌生与扩展的测定所获得的应 力应变。以下分节说明在目前的研究中使用的方法。2.1循环塑性模型和多轴疲劳标准早期的研究显示准确的应力分析是材料疲劳分析中最关键的部分。如果材料 的应力应变能够准确地获得,疲劳寿命就能够使用多轴疲劳标准合理地预测。缺 口或开裂构件的弹塑性应力分析需要将一个循环弹性模型导入有限元软件页面。 合理的

9、循环弹性模型的选择对于构件在循环加载下的精确应力分析是至关重要 的。材料在反复外部加载下循环弹性服从非线性应力应变反应。一种由Ohno和 Wang和Jiang和Sdhitoglu开发的循环塑性模型被用在如今的对缺口或开裂构 件的应力应变反应的有限元模拟。这种模型是基于Armstrong-Frederick模型的 运动硬化规则。该模型的基本构成数学方程列于表1。在相应的参考文献中可以 找到详尽的塑性模型的描述和材料常数的测定过程。循环塑性模型的选择是基于 该模型描述总体循环材料行为的能力,包括发生在材料缺口或裂纹尖端附近的循 环应变棘轮和应力松弛。在表1中列出的塑性模型是通过用户自定义的子程序

10、UMAT导入通用有限元ABAQUS程序包的。落后的欧拉算法被用于一个明确的应力 更新算法。这种算法减少了可以通过牛顿法解决的塑性模型成非线性方程。相应 的一致切线算子推导出能够确保总体牛顿平衡迭代程序二次收敛的总体平衡迭 代。由Jiang开发的一个重要的平面多轴疲劳标准被用于疲劳损伤评估。这个 标准可用如下数学方程表示:dD-M(1)Yi1 -bdD-M(1)bcde p + Tdy p人 2 J在公式一中,D代表在材料平面的疲劳损伤。b和m表示材料常量b和t表示材料平面的正应力和剪应力在有限元模拟中应用的循环塑性模型Yield 伽江 kmibdclcstresiyield Etr# 时匝 E

11、hex布=感.胴r = n(jrmil of yiikj surticf 肚队曲 modulus ? = picric sEuinHrderaqg R 业=ith backset part奸wf 一伊广制哗Af-mriberoc tuclanst parup=equivilaitplaji strin increcnent r rn, p= m推ridiss以nisJiang的多轴疲劳标准已经在各种材料中的疲劳预测中成功地应用。在常幅加载 条件下该准则并不需要一个单独的循环计数方法。任何疲劳准则使用的应力应变幅度 或范围需要定义一个载荷加载周期。因此,一个周期计算方法需要处理变幅加载。虽 然雨

12、流计数方法在计算加载循环上被广泛地接受,但是他在常幅多轴加载下不能很好 地定义。公式1表达的标准的第二个特征是它的预测开裂行为的能力。通过向公式1 导入常量b,Jiang的疲劳标准是一个能够预测不同裂纹行为的重要平面方法。常量b 的数值选择来预测一种基于光滑试样试验的特定模型的开裂。结果显示,基于Jiang 的标准的开裂行为预测大体上比其他多轴标准更加准确,如Faremi-Socie模型,Smith-Waltson-Topper模型和短裂纹基础标准。表2列出了 304L不锈钢在循环塑性模型和疲劳模型中使用的材料常量。循环塑性 材料常数是在完全颠倒拉压加载下的光滑试样试验得到的循环应力应变曲线上

13、得到 的。在相应的参考文献中可以找到测定材料常量的完整的程序说明。疲劳材料常量是 通过比较疲劳数据在完全颠倒拉压或纯扭转下测定的。表2SS304L的材料常量Cytlic plAstidtyElas tkity m-duLus E= 2D0 CPjconsentsPoissons fjlc -0.3 k = Tl 1 55 MPa1331 A 料=M7.-D, #J= 172.0,产=q州, 卢)=4暗rFtOJO AP/2=1.3kM Prodi 而 n R=fl_5iw aP/s=i .akNPredicliDn R=0_T5口 AP/S-D.Q5kN s- PredicliDn FH) &

14、5 iP/2-O.54kN - Pi&JicilDn R=1M iP/2=3.2kM - PP&3ICIIDOZ jlRS.OkN,j Prediciicn心讨 世AK, Stress Intensity Factor Rangs. MPa m表6缺口影响取决于缺口的尺寸,缺口越大,预期的影响也就越大。表7表示C01 试样的裂纹扩展速率。fao&-PJE)Dfao&-PJE)IEJWJ-Np/EePrediction51015a, Crack Length from Noteli Root, (mm)l j. 7. Nctcti effect for 5peci tine n CO:.表73.

15、3高低顺序加载实验结果包括两步高低顺序加载,如表8所示。表中显示出从缺口根部开始的 裂纹长度的影响。OE1OOE1OIEa, Craakrrom 匚2 Noidhi RoaL imm0&M1&Crack Lngaj Itomi ifw Noidh: RoaL 顾ma 时湮 q 吾.:5SS-5H表8表8jhmwee-ji!至 qEmuao-hJPEP3.4寿命预测一个合理的方法必须能够预测裂纹长度a和循环加载次数的关系。表9表示 试验获得的a-N结果与运用疲劳方法得到的预测结果的对比。在给定裂纹长度下预测 的疲劳寿命是通过如下公式获得的:da+J F,其中,N是相应裂纹长度下的循环加载次数;N

16、f是通过公式5预测的试样裂纹萌生寿寿命;另一个评估方法是运用试验结果与裂纹萌生寿命和疲劳失效寿命相比较。 和前面提到的一样,如今用到的裂纹萌生与传统的观念不同。Mumber oi CycleSj Gycl七T h vcriiwi n.umlKr af ludi ng Mumber oi CycleSj Gycl七T h vcriiwi n.umlKr af ludi ng cycle.R=Q.1 P/2=2.475kN& EKpefimerrt Predict oniiP/2=2.akNEKpefimerrt -ProdictiDH R=d.S& P/2=2.OkNEKperimerrt -P

17、rodirtiDnIIJii I表10表示当裂纹长度为0.5mm和10mm是预测的疲劳寿命与试验测得的寿命比进一步讨论在目前的裂纹扩展预测研究中使用的方法与通常使用的方法有着本质的区 别。现代方法与传统方法的区别有三个主要的特征。应力强度因子的开发是为了避免 在裂纹尖端的应力和应变的物质奇点。应力强度因子是基于弹性变形的概念。众所周 知,虽然可以应力强度因子用于处理与常幅载荷的情况下,修改和补充系数要为了将 考虑缺口效应等因素,的应力比的影响,并影响变幅载荷。因此,很多常量介绍,他 们确定最佳拟合实验所得裂纹增长数据。这些方法往往成为一个曲线拟合,而不是预 测。目前的办法尝试使用局部应力应变直

18、接生长的实验数据是用于测定在模型的材料 常数。传统上,裂纹萌生是仿照连续使用力学方法在应力和应变用于访问疲劳损伤。一 个单独的模型,往往对应力强度因子概念的基础,是需要处理裂纹扩展。为了使用的 骨折力学的方法,为裂纹增长预测,由于裂纹扩展寿命的预测是非常敏感的初始裂纹 长度,定义裂纹萌生尺寸更适合的实验数据比有一个物理基础,或者说,初始裂纹尺 寸在传统的表征方法是裂纹萌生一个合适的constant.Within疲劳的方法讨论目前的 调查,综合考虑裂纹萌生和裂纹增长是就业。一单标准是用来疲劳裂纹萌生和为裂纹 扩展。统一考虑允许一从裂纹萌生裂纹扩展的无缝过渡到没有必要定义一个裂纹萌生 尺寸。为了裂

19、纹扩展,一个单独的标准预测通常需要测定的裂纹生长方向。例如,最低 应变能密度因子理论(SIH的巴泰勒米,1980年;SIH的鲍伊,1992年;Badaliance,1980 年)中指定的疲劳裂纹扩展速率是有关能源的应变范围密度,而且裂纹扩展的方向是 确定的由最小应变能密度因子与尊重对在一个平面方向负荷周期的物质。其中最大切 向应力的方法,裂纹增长率假设为一个有效应力有关强度因子范围,而裂纹扩展方向 通过使用一个确定的最大切向应力准则。通过使用临界平面的多轴疲劳标准(1)目前 的办法预测裂纹扩展率和裂纹扩展方向以综合的方式。标准确定的疲劳其中的关键飞 机表面的开裂要形成和数量的应力和应变的关键平

20、面确定裂纹扩展速率。该方法是用 来预测成功的打击下方向装载条件涉及的加载方向变化。虽然裂纹启动整体预言“和裂纹扩展的,合理的协议一般与实验观察,预测结 果不如用1070钢。主要的原因是少准确描述循环塑性变形为1070 SS304L钢比。1070 钢显示器非常稳定的应力应变关系与几乎没有循环硬化/软化或者非比例硬化。正在审 议的重要证物材料非比例硬化和循环硬化/软化。该循环塑性模型简单的版本上市表1 不考虑循环硬化/软化或非比例硬化。从看到图11,这两组正常应力分量几乎成正比。这进一步证实,我加载模式结 果获得审议非比例作为硬化几乎相同,而没有考虑在有限元非比例硬化分析。1。00-| 册场:E5

21、3ML表11该循环硬化排斥/软化在本构模型的循环塑性变形不锈钢304L的贡献之间的差 距实验观察到的行为和疲劳正在审议的缺口成员的预测。图12显示的应力变化幅度 随着装载顺利标本周期数受到应变控制等幅载荷从图12可以看出,该材料的经验循 环循环软化后进行硬化。在换言之,在不锈钢应激反应304L的将不再稳定。循环硬 化/软化是非常困难的模型准确。在变形分析特别是与有限元分析,瞬态循环硬化/ 软化总是被忽略。另一个现实之间的循环塑性变形差和模型模拟了非马兴或应变范围内对循环塑 性无知本构模型。材料显示,大部分工程非 Masing 特性,而本构模型上市表1是根 据马兴行为。应力塑料应变迟滞圈图所示。

22、表13获得从应变控制等幅载荷实验用 狗骨形的光滑圆柱标本。应力塑性应变循环显示图。表13人采取相应的周期数对 试件疲劳寿命的一半。环被捆绑在一起在较低的提示。如果材料显示马兴行为,所 有的上层滞环分行如图所示。表13应该是一致的。由此可见图,表13这显示不 锈钢304L的非马兴行为或应变范围的影响,特别是当载荷幅值是很大的。F. IX F. IX Stress arnpl 11 udtr variac i.u n with he kiadiirg 守 id 心 under 5 Era I. n- LuricrolliHl m anuplicudi! luadi必 tiuw ing ignifi

23、csrL【cyclic hard- cnirigofcirniriji.clQ-PJ Gprn=dE欢世一UJ一.qlTrv NW表121400- Material: A1SI3D4LO.OCO t.OOE 0.010Q.O150.0200.02E平,Plistic Strain Ftang&Fig. 1 孔 Stab-ilizcd pLati.c Erdih hyirteres l#dp$ wit h the Ldwrti ” ti迎表13它可以包括非马兴行为,非比例硬化,循环硬化/软化为循环塑性本构关系。 列入所有这些因素导致一个非常复杂的本构模型。它也需要执行成有限元软件模型, 如在UM

24、ATABAQUS软件。此外,所有的循环审议塑性行为将放慢已经缓慢弹塑性有限 元应力分析的真正组成部分。进一步工作是需要好好考虑的材料变形 在数值应力分析。当一个组件被破获受到外部载入中,裂纹尖端附近的材料总是经验弹塑性变形 和应力均和在裂纹尖端株理论上无限如果材料 显示应变硬化。由于破获组件 能够承受一定的 外部负载,理论奇异问题是由对一个连续的基本假设 为一种材料。真正的压力和 紧张的一破获组件应该是有限的,当外部负载低于某一个水平。有限元方法的平 均出应力和高梯度地区的应变和它 可提供合理和现实的成果,为一个给定的 目 的。它是发现,考虑的因素非线性材料变形和非线性几何 裂纹尖端附近没有很

25、大影 响附近的裂纹扩展裂纹尖端的应力应变结果率低于不稳定裂纹扩展的地区。然而, 压力和附近获得了裂纹尖端应变结果弹塑性有限元应力分析裂纹组件是敏感的裂纹 尖端附近的有限元的大小。何时网格的大小是非常小的物质靠近裂纹尖端的应力和 应变获得了裂纹尖端从有限元分析会不切实际的高,这将导致在一个非常高的预测 裂纹扩展率。裂纹尖端附近的大小是有限模式“不变。初步研究(江峰,2004年 b)显示一个适当的元素的大小在1至3秩序倍多晶材料的晶粒尺寸。在这样一个元 素的大小范围内,疲劳取得的成果使用这种方法不是很敏感元素的大小的裂纹尖端 附近使用。对于不锈钢根据调查304L的,平均粒径为大约20流明。在当前的

26、有限 元模拟结果,裂纹尖端附近的最小单元尺寸为50流明。进一步调查是需要探讨在应 力和裂纹尖端附近影响元素的大小和元素类型的模拟结果。结论一种方法被用来预测丁附加在和逐步加载下缺口的疲劳行为。弹塑性应力分 析被用来推导测定缺口和开裂构件详尽的应力应变。多轴疲劳应力准则的应用从数 值应力应变分析结果输出在疲劳裂纹起始预测和扩展速率。随着物质完全确定常数 从测试的光滑试样的裂纹萌生和一个缺口裂纹扩展的成员可妥善为蓝本。参考文献1 ABAQUS Users Manual and Theory Manual Version 6.7, 2007. Hibbit Karlsson and Sorensen

27、, Inc., Providence, RI, USA, 2007. Altair HyperMesh,Version 7.0.2004. Altair Engineering, Inc.Badaliance, R.1980. Application of strain energy density factor to fatigue crack growth analysis. Engineering Fracture Mechanics 13, 657-666Crooker, T.W., Krause, D.J., 1972. The influence of stress ratio a

28、nd stress level on fatigue crack growth rates in 140 ksi YS steel. Report of NRL Progress.Naval Research Laboratory, Washington, DC, pp. 33-35.Ding, F., Feng, M., Jiang, Y., 2007a. Modeling of fatigue crack growth from a notch. International Journal of Plasticity 23, 1167-1188.Ding, F., Zhao, T., Ji

29、ang, Y., 2007b. A study of fatigue crack growth with changing loading direction. Engineering Fracture Mechanics 74,2014-2029.Dong, P., Hong, J.K., Cap, Z., 2003. Stresses and stress intensities at notches: anomalous crack growth revisited. International Journal of Fatigue 25, 811-825.Ding, R., Hoffm

30、eyer, J., Seeger, T., Vormwald, M., 2006. Short fatigue crack growth under nonproportional multiaxial elastic-plastic strains. International Journal of Fatigue 28, 972-982.Elber, W., 1970. Fatigue crack closure under cyclic tension. Engineering Fracture and Mechanics 2, 37-45.Elber, W.1971.The signi

31、ficance of fatigue crack closure. Damage Tolerance in Aircraft Structure,ASME STP 486.Philadelphia, PA, pp.230-242.Jiang, Y., 2000. A fatigue criterion for general multiaxial loading. Fatigue and Fracture of Engineering Materials and Structures 23,19-32.Jiang, Y., Feng, M., 2004a. Modeling of fatigu

32、e crack propagation.ASME Journal of Engineering Materials and Technology 126, 77-86.Jiang, Y., Feng, M., 2004b. A new approach to predicting fatigue crack propagation. ASME PVP-vol. 474, Fracture Methodologies and Manufacturing Process, July 25-29, 2004. San Diego, CA, PVP2004-2297, pp. 23-31.Jiang,

33、 Y., Kurath, P, 1997a. An investigation of cyclic transient behavior and implications on fatigue life estimates. ASME Journal of Engineering Materials and Technology 119, 161-170.Jiang, Y., Kurath, P., 1997b. Non-proportional cyclic deformation: critical experiments and analytical modeling. Internat

34、ional Journal of Plasticity 13 (8 -9), 743-763.Jiang, Y., Sehitoglu, H., 1996a. Modeling of cyclic ratchetting plasticity:part I - development of constitutive equations. ASME Journal of Applied Mechanics 63, 720-725.Jiang, Y., Sehitoglu, H., 1996b. Modeling of cyclic ratchetting plasticity: part II

35、- implement of the new model and comparison of theory with experiments. ASME Journal of Applied Mechanics 63, 726-733.Jiang, Y., Zhang, J., 2008. Benchmark experiments and characteristic cyclic plasticity behavior. International Journal of Plasticity 24,1481-1515Jiang,Y.Xu, B,Sehitoglu92002.Three-di

36、mensional elastic-plastic stress analysis of rolling contact. ASME Journal of Tribology 124,699-708.Jiang, Y., Feng, M., Ding, F., 2005. A reexamination of crack closure in crack propagation. International Journal of Plasticity 21, 1720-1740.Jiang, Y., Ding, F., Feng, M., 2007. An approach for fatig

37、ue life prediction. ASME Journal of Engineering Materials and Technology 129, 182-189.Jiang, Y., Hertel, O., Vormwald, M., 2007. An experimental evaluation of three critical plane multiaxial fatigue criteria. International Journal of Fatigue 29, 1490-1502.Kalnaus, S., Jiang, Y., 2008. Fatigue of AL6XN stainless steel. ASME Journal of Engineering Materials and Technology 130, 031013.Kalnaus, S., Fan, F., Vasudevan, A.K., Jiang, Y., 2008. An experimental investigation of fatigue

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论