版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、湖北省武汉市六中学致诚中学2023年中考冲刺卷数学测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1有一个数用科学记数法表示为5.2105,则这个数是()A520000BC52000D520000023的相反数是()AB3CD33小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为1
2、2cm,圆心角为的扇形,则A圆锥形冰淇淋纸套的底面半径为4cmB圆锥形冰淇淋纸套的底面半径为6cmC圆锥形冰淇淋纸套的高为D圆锥形冰淇淋纸套的高为4下列四个不等式组中,解集在数轴上表示如图所示的是()ABCD5已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( ) ABCD6在RtABC中,C=90,AC=1,BC=3,则A的正切值为()A3BCD7如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A3B4C5D68如图,点P是AOB外的一点,点M,N分别是AOB两边上的点,点P关于OA的
3、对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM2.5cm,PN3cm,MN4cm,则线段QR的长为( )A4.5cmB5.5cmC6.5cmD7cm9有三张正面分别标有数字2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )ABCD10由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A三个视图的面积一样大B主视图的面积最小C左视图的面积最小D俯视图的面积最小二、填空题(本大题共6个小题,每
4、小题3分,共18分)11如图,在ABC中,AB=AC=6,BAC=90,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_12分解因式: _.13已知正方形ABCD,AB1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长r的取值范围是_14电子跳蚤游戏盘是如图所示的ABC,AB=AC=BC=1如果跳蚤开始时在BC边的P0处,BP0=2跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且B
5、P3= BP2;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2016与点P2017之间的距离为_15在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1则这位选手五次射击环数的方差为 16如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_三、解答题(共8题,共72分)17(8分)计算:+26tan3018(8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表: 组别身高Ax160B160 x165
6、C165x170D170 x175Ex175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在 组,中位数在 组;(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;(3)已知该校共有男生600人,女生480人,请估让身高在165x175之间的学生约有多少人?19(8分)如图,BAC的平分线交ABC的外接圆于点D,交BC于点F,ABC的平分线交AD于点E(1)求证:DEDB:(2)若BAC90,BD4,求ABC外接圆的半径;(3)若BD6,DF4,求AD的长20(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统
7、计现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项)并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率21(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对1235岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;
8、(3)扇形统计图中1823岁部分的圆心角的度数是;(4)据报道,目前我国1235岁网瘾人数约为2000万,请估计其中1223岁的人数 22(10分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,EAF=45,试判断BE,EF,FD之间的数量关系小聪把ABE绕点A逆时针旋转90至ADG,通过证明AEFAGF;从而发现并证明了EF=BE+FD【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,EAF=45,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,BAC=90,AB=AC,点E、F
9、在边BC上,且EAF=45,若BE=3,EF=5,求CF的长23(12分)为给邓小平诞辰周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?一座建筑物距离点米远(即米),小亮在点测得建筑物顶部的仰角(即)为.点、,在同一个平面内,点、在同一条直线上,且,问建筑物高为多少米?24如图,在RtABC中,B=90,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使BCM=2A判断直线M
10、N与O的位置关系,并说明理由;若OA=4,BCM=60,求图中阴影部分的面积2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、A【答案解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【题目详解】5.2105=520000, 故选A【答案点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、B【答案解析】
11、根据相反数的定义与方法解答.【题目详解】解:3的相反数为.故选:B.【答案点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.3、C【答案解析】根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高【题目详解】解:半径为12cm,圆心角为的扇形弧长是:,设圆锥的底面半径是rcm,则,解得:即这个圆锥形冰淇淋纸套的底面半径是2cm圆锥形冰淇淋纸套的高为故选:C【答案点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个
12、关系的记忆是解题的关键4、D【答案解析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案【题目详解】由解集在数轴上的表示可知,该不等式组为,故选D【答案点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键5、C【答案解析】测试卷分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k1,b1因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限综上所述,符合条件的图象是C选项故选C考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系6、A【答案解析】【分析】
13、根据锐角三角函数的定义求出即可【题目详解】在RtABC中,C=90,AC=1,BC=3,A的正切值为=3,故选A【答案点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键7、D【答案解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1【题目详解】点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S1+S1=4+4-11=2故选D8、A【答案解析】测试卷分析:利用轴对称图形的性质得出PM=MQ,
14、PN=NR,进而利用PM=25cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-25=25(cm),即可得出QR的长RN+NQ=3+25=35(cm)故选A考点:轴对称图形的性质9、C【答案解析】画树状图得:共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【答案点睛】运用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件10、C【答案解析】测试卷分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4
15、个面,故可知主视图的面积最大.故选C考点:三视图二、填空题(本大题共6个小题,每小题3分,共18分)11、或【答案解析】过点A作AGBC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.【题目详解】如图所示,过点A作AGBC,垂足为G,AB=AC=6,BAC=90,BC=12,AB=AC,AGBC,AG=BG=CG=6,设BD=x,则EC=12-DE-BD=12-5-x=7-x,由翻折的性质可知:DFA=B=C=AFE=45,DB=DF,EF=FC,DF=x,EF=
16、7-x,在RtDEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,当BD=3时,DG=3,AD=,当BD=4时,DG=2,AD=,AD的长为或,故答案为:或.【答案点睛】本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.12、【答案解析】先提取公因式b,再利用完全平方公式进行二次分解解答:解:a1b-1ab+b,=b(a1-1a+1),(提取公因式)=b(a-1)1(完全平方公式)13、1r【答案解析】首先根据题意求得对角线AC的长,设圆A的半径为R,根据点B在圆A外,得出0R1,则-1-R0,再根据圆A与
17、圆C外切可得R+r=,利用不等式的性质即可求出r的取值范围【题目详解】正方形ABCD中,AB=1,AC=,设圆A的半径为R,点B在圆A外,0R1,-1-R0,-1-R以A、C为圆心的两圆外切,两圆的半径的和为,R+r=,r=-R,-1r故答案为:-1r【答案点睛】本题考查了圆与圆的位置关系,点与圆的位置关系,正方形的性质,勾股定理,不等式的性质掌握位置关系与数量之间的关系是解题的关键14、3【答案解析】ABC为等边三角形,边长为1,根据跳动规律可知,P0P1=3,P1P2=2,P2P3=3,P3P4=2,观察规律:当落点脚标为奇数时,距离为3,当落点脚标为偶数时,距离为2,2017是奇数,点P
18、2016与点P2017之间的距离是3故答案为:3【答案点睛】考查的是等边三角形的性质,根据题意求出P0P1,P1P2,P2P3,P3P4的值,找出规律是解答此题的关键15、2.【答案解析】测试卷分析:五次射击的平均成绩为=(5+7+8+6+1)=7,方差S2=(57)2+(87)2+(77)2+(67)2+(17)2=2考点:方差16、1【答案解析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可【题目详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在RtABC中,由勾股定理:x2=(8-x)2+22,解得:x=,4x=1,即菱形的最大周长为1cm故答案是:1【答案
19、点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程三、解答题(共8题,共72分)17、10 【答案解析】根据实数的性质进行化简即可计算.【题目详解】原式=9-1+2-+6=10-=10 【答案点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18、(1)B,C;(2)2;(3)该校身高在165x175之间的学生约有462人【答案解析】根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解【题目详解】解:(1)直方图中,B组的人数为12,最多,男生的身高的众数在B组,男生总人数为:4+12+10+8+6=40,按照从低到
20、高的顺序,第20、21两人都在C组,男生的身高的中位数在C组,故答案为B,C;(2)女生身高在E组的百分比为:117.5%37.5%25%15%=5%,抽取的样本中,男生、女生的人数相同,样本中,女生身高在E组的人数有:405%=2(人),故答案为2;(3)600+480(25%+15%)=270+192=462(人)答:该校身高在165x175之间的学生约有462人【答案点睛】考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.19、(1)见解析;(2)2 (3)1【答案解析】(1)通过证明BED=DBE得到DB=DE;(2)连接
21、CD,如图,证明DBC为等腰直角三角形得到BC=BD=4,从而得到ABC外接圆的半径;(3)证明DBFADB,然后利用相似比求AD的长【题目详解】(1)证明:AD平分BAC,BE平分ABD,1=2,3=4,BED=1+3=2+4=5+4=DBE,DB=DE;(2)解:连接CD,如图,BAC=10,BC为直径,BDC=10,1=2,DB=BC,DBC为等腰直角三角形,BC=BD=4,ABC外接圆的半径为2;(3)解:5=2=1,FDB=BDA,DBFADB,=,即=,AD=1【答案点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心也考查了圆周
22、角定理和相似三角形的判定与性质20、(1)50;(2)240;(3).【答案解析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【题目详解】解:(1);(2)样本中喜爱看电视的人数为(人,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率【答案点睛】本题考查了列表法与树状图法;利用列表法或树
23、状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.21、 (1)1500;(2)见解析;(3)108;(3)1223岁的人数为400万【答案解析】测试卷分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;(2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图;(3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;(4)先计算调查中1223岁的人数所占的百分比,再求网瘾人数约为2000万中的1223岁的人数测试卷解析:解:(1)结合条形统计图和
24、扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为33022%=1500人故答案为1500 ;(2)1500-450-420-330=300人补全的条形统计图如图:(3)18-23岁这一组所对应的圆心角的度数为360=108故答案为108 ;(4)(300+450)1500=50%,考点:条形统计图;扇形统计图22、(1)DF=EF+BE理由见解析;(2)CF=1【答案解析】(1)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AEFAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,ACG=
25、B,EAG=90,FCG=ACB+ACG=ACB+B=90,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE理由:如图1所示,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,ADC=ABE=90,点C、D、G在一条直线上,EB=DG,AE=AG,EAB=GAD,BAG+GAD=90,EAG=BAD=90,EAF=15,FAG=EAGEAF=9015=15,EAF=GAF,在EAF和GAF中,EAFGAF,EF=FG,FD=FG+DG,DF=EF+BE;(2)BAC=90,AB=AC,将ABE绕点A顺时针旋转90得ACG,连接FG,如图2,AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,FG2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版电商平台客户数据保密及隐私保护合同3篇
- 二零二五版农业产业化合同管理与农产品质量安全协议3篇
- 二零二五版智能广告终端设备投放与维护合同3篇
- 二零二五年绿色环保抵押贷款合同范本分享3篇
- 二零二五版一期临床试验统计分析合同3篇
- 二零二五年度辣椒种植与冷链物流运输合同3篇
- 二零二五版餐厅智能点餐系统维护与升级合同3篇
- 二零二五年度餐饮企业承包经营与品牌升级合同3篇
- 二零二五版智能签约二手房购房合同范本2篇
- 二零二五版新能源汽车电池购销合同样本3篇
- 冬春季呼吸道传染病防控
- 中介费合同范本(2025年)
- 《kdigo专家共识:补体系统在肾脏疾病的作用》解读
- 生产调度员岗位面试题及答案(经典版)
- 【物 理】2024-2025学年八年级上册物理寒假作业人教版
- 交通运输安全生产管理规范
- 电力行业 电力施工组织设计(施工方案)
- 《法制宣传之盗窃罪》课件
- 通信工程单位劳动合同
- 查对制度 课件
- 2024-2030年中国猪肉市场销售规模及竞争前景预测报告~
评论
0/150
提交评论