版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设等差数列an满足3a8=5a15,且AS23BS24CS2已知集合,则为( )ABCD3已知集合,集合满足,则集合的个数为ABCD4已知函数,函数有四个不同的零点、,且满足:,则的取值范围是( )ABCD5将偶函数的图象向右平移个单位长度
2、后,得到的曲线的对称中心为( )ABCD6执行如图所示的程序框图,若输出的S的值为3,则判断框中填入的条件可以是( )ABCD7为了得到函数的图象,可以将函数的图象( )A向右平移个单位长度B向左平移个单位长度C向左平移个单位长度D向右平移个单位长度8若,则()A8B7C6D59已知函数,在区间内任取两个实数,且,若不等式恒成立,则实数的取值范围是ABCD10i是虚数单位,若集合S=,则ABCD11在边长为1的正中, , 是边的两个三等分点(靠近于点),等于( )ABCD12甲、乙、丙、丁四位同学一起去向老师询问数学考试的成绩老师说:你们四人中有两位优秀、两位良好,我现在给乙看甲、丙的成绩,给
3、甲看丙的成绩,给丁看乙的成绩,看后乙对大家说:我还是不知道我的成绩.根据以上信息,则( )A甲可以知道四人的成绩B丁可以知道四人的成绩C甲、丁可以知道对方的成绩D甲、丁可以知道自己的成绩二、填空题:本题共4小题,每小题5分,共20分。13已知关于的不等式的解集为,则实数_.14若甲、乙两人从5门课程中各选修2门,则甲、乙所选修的课程都不相同的选法种数为_15已知函数f(x)x33x+1,则函数yf(x)的单调递减区间是_16如图,矩形中曲线的方程分别为,在矩形内随机取一点,则此点取自阴影部分的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)莫言是中国首位获
4、得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:阅读过莫言的作品数(篇)0252650517576100101130男生36111812女生48131510(1)试估计该学校学生阅读莫言作品超过50篇的概率.(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为“对莫言作品的非常了解”与性别有关?非常了解一般了解合计男生女生合计注:K2P(K2k0)0.250.150.100.050.025k01.3232.0722.7063.8415.02418(12分)设函数.
5、()求不等式的解集;()求证:,并求等号成立的条件.19(12分)由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图(1)若甲解开密码锁所需时间的中位数为47,求a、b的值,并分别求出甲、乙在1分钟内解开密码锁的频率;(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立求该团队能进入下一关的概率;
6、该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X的数学期望达到最小,并说明理由20(12分)已知函数,.(1)求的值;(2)求的最小正周期;(3)求的最大值及取得最大值的x的集合.21(12分)某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:男生女生总计购买数学课外辅导书超过本购买数学课外辅导书不超过本总计()根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;()从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.附:,.22(10分)已知函数.(1)求函数的单调区间;(
7、2)当时,求函数的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】因a8=a1+7d,a15=a1+14d,故由题设3a8=5a152、A【解析】利用集合的交集运算进行求解即可【详解】由题可知集合中,集合中求的是值域的取值范围,所以的取值范围为答案选A【点睛】求解集合基本运算时,需注意每个集合中求解的是x还是y,求的是定义域还是值域,是点集还是数集等3、D【解析】分析:根据题意得到为的子集,确定出满足条件的集合的个数即可详解:集合,集合满足,则满足条件的集合的个数是故选点睛:本题是基础题,考查了集合的子集,当集
8、合中有个元素时,有个子集。4、D【解析】作出函数的图象,可得出当直线与函数的图象有四个交点时的取值范围,根据图象得出,并求出实数的取值范围,将代数式转化为关于的函数,利用双勾函数的基本性质求出的取值范围.【详解】作出函数的图象如下图所示:由图象可知,当时,直线与函数的图象有四个交点,由于二次函数的图象关于直线对称,则,又,由题意可知,可得,由,即,解得.,令,则,由基本不等式得,当且仅当时,等号成立,当时,当时,所以,因此,的取值范围是,故选:D.【点睛】本题考查函数零点的取值范围,解题时要充分利用图象的对称性以及对数的运算性质得出一些定值条件,并将所求代数式转化为以某个变量为自变量的函数,转
9、化为函数值域求解,考查化归与转化思想、函数方程思想的应用,属于中等题.5、D【解析】根据函数为偶函数求出函数解析式,根据余弦函数的图象和性质求对称轴即可.【详解】为偶函数,令,得故选:D【点睛】本题主要考查了诱导公式和余弦函数的图象与性质,属于中档题.6、B【解析】模拟程序运行,观察变量值的变化,判断循环条件【详解】程序运行中,变量值变化如下:,判断循环条件,满足,判断循环条件,满足,判断循环条件,满足,判断循环条件,这里应不满足,输出故条件为判断框中填入,故选:B.【点睛】本题考查程序框图,解题时可模拟程序运行,根据输出结论确定循环条件7、D【解析】因为把的图象向右平移个单位长度可得到函数的
10、图象,所以,为了得到函数的图象,可以将函数的图象,向右平移个单位长度故选D.8、D【解析】由得,即,然后即可求出答案【详解】因为,所以所以即,即解得故选:D【点睛】本题考查的是排列数和组合数的计算,较简单.9、B【解析】分析:首先,由的几何意义,得到直线的斜率,然后,得到函数图象上在区间(1,2)内任意两点连线的斜率大于1,从而得到f(x)=1 在(1,2)内恒成立分离参数后,转化成 a2x2+3x+1在(1,2)内恒成立从而求解得到a的取值范围详解:的几何意义为:表示点(p+1,f(p+1) 与点(q+1,f(q+1)连线的斜率,实数p,q在区间(0,1)内,故p+1 和q+1在区间(1,2
11、)内不等式1恒成立,函数图象上在区间(1,2)内任意两点连线的斜率大于1,故函数的导数大于1在(1,2)内恒成立由函数的定义域知,x1,f(x)=1 在(1,2)内恒成立即 a2x2+3x+1在(1,2)内恒成立由于二次函数y=2x2+3x+1在1,2上是单调增函数,故 x=2时,y=2x2+3x+1在1,2上取最大值为15,a15a15,+)故选A点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.10、B【解析】试题分析:由可得,.考点:
12、复数的计算,元素与集合的关系.11、C【解析】试题分析:如图,是边的两个三等分点,故选C.考点:平面向量数量积的运算12、D【解析】先由乙不知道自己成绩出发得知甲、丙和乙、丁都是一优秀、一良好,那么甲、丁也就结合自己看的结果知道自己成绩了.【详解】解:乙看后不知道自己成绩,说明甲、丙必然是一优秀、一良好,则乙、丁也必然是一优秀、一良好;甲看了丙的成绩,则甲可以知道自己和丙的成绩;丁看了乙的成绩,所以丁可以知道自己和乙的成绩,故选D.【点睛】本题考查了推理与证明,关键是找到推理的切入点.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为,可得,根据根据关于的不等式的解集为,可得,
13、分别讨论和不等式解情况,即可求得答案.【详解】根据关于的不等式的解集为可得解得:,故不合符题意,舍去.综上所述,.故答案为:.【点睛】本题主要考查了根本绝对值不等式解情况求参数值,解题关键是掌握将绝对值不等式解法,考查了分析能力和计算能力,属于基础题.14、30【解析】根据题意知,采用分步计数方法,第一步,甲从门课程中选门,有种选法;第二步乙从剩下的门中选门,有种选法,两者相乘结果即为所求的选法种数【详解】故答案为【点睛】本题主要考查了分步乘法计数原理的应用,分步要做到“步骤完整”,各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复15、【解析】求得函数的导数,利用导数的符号,即
14、可求解,得到答案【详解】由题意,函数,则,令,即,解得,所以函数的单调递减区间为,故答案为:【点睛】本题主要考查了利用研究函数的单调性,求解函数的单调区间,其中解答中熟记导数与原函数的关系式解答的关键,着重考查了推理与运算能力,属于基础题16、【解析】运用定积分可以求出阴影部分的面积,再利用几何概型公式求出在矩形内随机取一点,则此点取自阴影部分的概率.【详解】解:阴影部分的面积为,故所求概率为【点睛】本题考查了几何概型,正确运用定积分求阴影部分的面积是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】试题分析:(1)根据古典概型概率公式求
15、出阅读某莫言作品在篇以上的频率,从而估计该校学生阅读莫言作品超过50篇概率;(2)利用公式K2求得 ,与邻界值比较,即可得到结论.试题解析:(1)由抽样调查阅读莫言作品在50篇以上的频率为,据此估计该校学生阅读莫言作品超过50篇的概率约为;(2)非常了解一般了解合计男生302050女生252550合计5545100根据列联表数据得 所以没有75%的把握认为对莫言作品的非常了解与性别有关.【方法点睛】本题主要考查古典概型概率公式以及独立性检验,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中
16、,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)18、 () ()见证明【解析】()利用零点分类法,进行分类讨论,求出不等式的解集;()法一:,当且仅当时取等号,再根据三角绝对值不等式,可以证明出,当且仅当时取等号,最后可以证明出,以及等号成立的条件;法二:利用零点法把函数解析式写成分段函数形式,求出函数的单调性,最后求出函数的最小值,以及此时的的值.【详解】解:()当时,解得当时,解得 当时,无实数解原不等式的解集为 ()证明:法一:,当且仅当时取等号又,当且仅当时取等号,等号成立的条件是 法二: 在上单调递减,在上单调递增,等号成立的条件是【点睛】本题考查了绝对值不等式的
17、解法以及证明绝对值不等式,利用零点法,分类讨论是解题的关键.19、(1),甲、乙在1分钟内解开密码锁的频率分别是0.9,0.7;(2)0.985;先派出甲,再派乙,最后派丙.【解析】(1)根据频率分布直方图中左右两边矩形面积均为计算出中位数,可得出、的值,再分别计算甲、乙在分钟内解开密码锁的频率值;(2)利用独立事件概率的乘法公式可计算出所求事件的概率;分别求出先派甲和先派乙时随机变量的数学期望,比较它们的大小,即可得出结论【详解】(1)甲解开密码锁所需时间的中位数为47,解得; ,解得; 甲在1分钟内解开密码锁的频率是; 乙在1分钟内解开密码锁的频率是;(2)由(1)知,甲在1分钟内解开密码
18、锁的频率是0.9,乙是0.7,丙是0.5,且各人是否解开密码锁相互独立;令“团队能进入下一关”的事件为,“不能进入下一关”的事件为, 该团队能进入下一关的概率为;设按先后顺序自能完成任务的概率分别p1,p2,p3,且p1,p2,p3互不相等,根据题意知X的取值为1,2,3;则, , 若交换前两个人的派出顺序,则变为,由此可见,当时,交换前两人的派出顺序可增大均值,应选概率大的甲先开锁; 若保持第一人派出的人选不变,交换后两人的派出顺序,交换后的派出顺序则变为,当时,交换后的派出顺序可增大均值;所以先派出甲,再派乙,最后派丙,这样能使所需派出的人员数目的均值(数学期望)达到最小【点睛】本题考查频率分布直方图中位数的计算、离散型随机变量分布列与数学期望,在作决策时,可以依据数学期望和方差的大小关系来作出决策,考查分析问题的能力,属于难题20、(1)0;(2)最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专用建筑工具租赁合同
- 2024年建筑工程施工物资合同
- 2024年商业店铺联合租赁合同
- 2024年度加工承揽合同承揽工作内容及要求
- 【初中生物】脊椎动物-鸟和哺乳动物课件-2024-2025学年人教版(2024)生物七年级上册
- 2024年定制版:物流运输居间协议
- 2024年在线教育平台建设及内容提供合同
- 2024国际货运代理服务合同及附加条款
- 2024年废弃物处理与回收合同处理方法与环保标准
- 2024年北京市出租车指标承包经营协议
- 《长相思》 完整版课件
- 作品赏析:《雷雨》集中尖锐的矛盾冲突
- (完整word版)高考英语作文练习纸(标准答题卡)
- 《山西省建设工程计价依据》(2018)定额调整
- 电镀废水处理工程加药计算方法
- 絮凝搅拌机操作规程
- 高考文言文阅读模拟训练:苏轼《晁错论》(附答案解析与译文)
- 小学数学 三年级上《去游乐园》教学设计
- 小学综合实践活动-我做急救小医生教学设计学情分析教材分析课后反思
- 高中数学必修二 第六章 知识总结及测试(无答案)
- DB13T 5387-2021 水库库容曲线修测及特征值复核修正技术导则
评论
0/150
提交评论