辽宁省丹东市2021-2022学年数学高二下期末联考模拟试题含解析_第1页
辽宁省丹东市2021-2022学年数学高二下期末联考模拟试题含解析_第2页
辽宁省丹东市2021-2022学年数学高二下期末联考模拟试题含解析_第3页
辽宁省丹东市2021-2022学年数学高二下期末联考模拟试题含解析_第4页
辽宁省丹东市2021-2022学年数学高二下期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知命题“,使得”是真命题,则实数的取值范围是( )ABCD2已知具有线性相关关系的五个样本点A1(0,0),A

2、2(2,2),A3(3,2),A4(4,2)A5(6,4),用最小二乘法得到回归直线方程l1:y=bx+a,过点A1,A2的直线方程l2:y=mx+n那么下列4个命题中(1) ;(2)直线过点; (3) ; (4) .(参考公式,) 正确命题的个数有( )A1个B2个C3个D4个3已知单位圆有一条长为的弦,动点在圆内,则使得的概率为( )ABCD4已知函数,则的解集为()ABCD5已知曲线,给出下列命题:曲线关于轴对称;曲线关于轴对称;曲线关于原点对称;曲线关于直线对称;曲线关于直线对称,其中正确命题的个数是( )A1B2C3D46函数f(x)与它的导函数f(x)的大致图象如图所示,设g(x)

3、=f(x)exA15B25C37观察下列各式:则()A28B76C123D1998双曲线和有()A相同焦点B相同渐近线C相同顶点D相等的离心率9从位男生,位女生中选派位代表参加一项活动,其中至少有两位男生,且至少有位女生的选法共有( )A种B种C种D种10已知某几何体的三视图如图所示,则该几何体的外接球的表面积为 ( )ABCD11在中,则的面积为( )A15BC40D12设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若从4名男生和3名女生中任选2人参加演讲比赛,

4、则至少选出1名女生的概率为_(结果用分数表示)14如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为_15已知关于的不等式的解集为,则实数_.16若交大附中共有名教职工,那么其中至少有两人生日在同一天的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科。某省采用模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),

5、每科目满分100分.为了应对新高考,某学校从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.(1)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如下表是根据调查结果得到的列联表.请求出和,并判断是否有的把握认为选择科目与性别有关?说明你的理由;选择“物理”选择“历史”总计男生10女生25总计(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名

6、女生中随机抽取4人,设这4人中选择“历史”的人数为,求的分布列及数学期望.参考公式:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818(12分)设函数.(1)若在其定义域上是增函数,求实数的取值范围;(2)当时,在上存在两个零点,求的最大值.19(12分)请先阅读:在等式的两边求导,得:,由求导法则,得:,化简得等式:利用上述的想法,结合等式(,正整数)(1)求 的值;(2)求的值20(12分)某小区新开了一家“重庆小面”面馆,店主统计了开业后五天中每天的营业额(单位:百元),得到下表中的数据,分析后可知与x之间具有线性相

7、关关系(1)求营业额关于天数x的线性回归方程;(2)试估计这家面馆第6天的营业额附:回归直线方程中,21(12分)如图,圆锥的展开侧面图是一个半圆,、是底面圆的两条互相垂直的直径,为母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点、为对称轴的抛物线的一部分(1)证明:圆锥的母线与底面所成的角为;(2)若圆锥的侧面积为,求抛物线焦点到准线的距离22(10分)长时间用手机上网严重影响着学生的健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周手机上网时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周

8、手机上网的时长大于21小时,则称为“过度用网”(1)请根据样本数据,分别估计A,B两班的学生平均每周上网时长的平均值;(2)从A班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度用网”的概率;(3)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为,写出的分布列和数学期望E.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用二次函数与二次不等式的关系,可得函数的判别式,从而得到.【详解】由题意知,二次函数的图象恒在轴上方,所以,解得:,故选C.【点睛】本题考查利用全称命题为真命题,求参数

9、的取值范围,注意利用函数思想求解不等式.2、B【解析】分析:先求均值,再代公式求b,a,再根据最小二乘法定义判断命题真假.详解:因为 ,所以直线过点;因为,所以 因为,所以,因为过点A1,A2的直线方程,所以 ,即;根据最小二乘法定义得; (4) .因此只有(1)(2)正确,选B.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.3、A【解析】建立直角坐标系,则,设点坐标为,则,故,则使得的概率为,故选A【点睛】(1)当试验的结果构成的区

10、域为长度面积体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率4、C【解析】根据分段函数的表达式,讨论当和时,不等式的解,从而得到答案。【详解】因为,由,得: 或;解得;;解得: ;所以的解集为;故答案选C【点睛】本题考查指数不等式与对数不等式的解法,体现了分类讨论的数学思想,属于中档题。5、C【解析】根据定义或取特殊值对曲线的对

11、称性进行验证,可得出题中正确命题的个数.【详解】在曲线上任取一点,该点关于轴的对称点的坐标为,且,则曲线关于轴对称,命题正确;点关于轴的对称点的坐标为,且,则曲线关于轴对称,命题正确;点关于原点的对称点的坐标为,且,则曲线关于原点对称,命题正确;在曲线上取点,该点关于直线的对称点坐标为,由于,则曲线不关于直线对称,命题错误;在曲线上取点,该点关于直线的对称点的坐标为,由于,则曲线不关于直线对称,命题错误.综上所述,正确命题的个数为.故选:C.【点睛】本题考查曲线对称性的判定,一般利用对称性的定义以及特殊值法进行判断,考查推理能力,属于中等题.6、B【解析】结合图象可得到f(x)-f(x)0成立

12、的x的取值范围,从而可得到g(x)【详解】由图象可知,y轴左侧上方图象为f(x)的图象,下方图象为对g(x)求导,可得g(x)=f(x)-f(x)ex,结合图象可知x(0,1)和x(4,5)时,f(x)-f(x)0,即g(x)在0,1和【点睛】本题考查了函数的单调性问题,考查了数形结合的数学思想,考查了导数的应用,属于中档题.7、C【解析】试题分析:观察可得各式的值构成数列1,3,4,7,11,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项继续写出此数列为1,3,4,7,11,18,29,47,76,123,第十项为123,即考点:归纳推理8、A【解析】对于已知的两条双曲

13、线,有,则半焦距相等,且焦点都在轴上,由此可得出结论.【详解】解:对于已知的两条双曲线,有,半焦距相等,且焦点都在轴上,它们具有相同焦点.故选:A.【点睛】本题考查双曲线的定义与性质,属于基础题.9、B【解析】由题意知本题要求至少有两位男生,且至少有1位女生,它包括:两个男生,两个女生;三个男生,一个女生两种情况,写出当选到的是两个男生,两个女生时和当选到的是三个男生,一个女生时的结果数,根据分类计数原理得到结果解:至少有两位男生,且至少有1位女生包括:两个男生,两个女生;三个男生,一个女生当选到的是两个男生,两个女生时共有C52C42=60种结果,当选到的是三个男生,一个女生时共有C53C4

14、1=40种结果,根据分类计数原理知共有60+40=100种结果,故选B10、D【解析】由题设中提供的三视图中的图形信息与数据信息可知该几何体是一个底面是边长分别为,的等腰三角形,高是的三棱锥,如图,将其拓展成三棱柱,由于底面三角形是等腰三角形,所以顶角的余弦为,则,底面三角形的外接圆的半径,则三棱锥的外接球的半径,其表面积,应选答案D。11、B【解析】先利用余弦定理求得,然后利用三角形面积公式求得三角形的面积.【详解】由余弦定理得,解得,由三角形面积得,故选B.【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,属于基础题.12、B【解析】利用函数的定义即可得到结果.【详解】由题意得

15、到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合我们可以通过代入和赋值的方法当f(1)=,0时,此时得到的圆心角为,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,故选B【点睛】本题考查函数的定义,即“对于集合A中的每一个值,在集合B中有唯一的元素与它对应”(不允许一对多).二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:从4名男生和3名女生中任选2人参加演讲比赛,则所有可能结果共有种,设事件A“所选2人都是男生”,则A事件“所选2

16、人都是男生”包含的基本事件个数有种,即可求出A事件的概率,从而利用即可.详解:从4名男生和3名女生中任选2人参加演讲比赛,则所有可能结果共有种,设事件A“所选2人都是男生”,则A事件“所选2人都是男生”包含的基本事件个数有种,故至少选出1名女生的概率为.故答案为:.点睛:本题考查概率的求法,解题时要认真审题,注意等可能事件概率计算公式、对立事件概率计算公式的合理运用.14、【解析】互为反函数的图象关于直线对称,所以两个阴影部分也关于直线对称.利用面积分割和定积分求出上部分阴影面积,再乘以2得到整个阴影面积.【详解】如图所示,连接,易得,.【点睛】考查灵活运用函数图象的对称性和定积分求解几何概型

17、,对逻辑思维能力要求较高.本题在求阴影部分面积时,只能先求上方部分,下方部分中学阶段无法直接求.15、【解析】因为,可得,根据根据关于的不等式的解集为,可得,分别讨论和不等式解情况,即可求得答案.【详解】根据关于的不等式的解集为可得解得:,故不合符题意,舍去.综上所述,.故答案为:.【点睛】本题主要考查了根本绝对值不等式解情况求参数值,解题关键是掌握将绝对值不等式解法,考查了分析能力和计算能力,属于基础题.16、1【解析】分析:根据每年有天,可判断名教职工,中至少有两人生日在同一天为必然事件,从而可得结果.详解:假设每一天只有一个人生日,则还有人,所以至少两个人同日生为必然事件,所以至少有两人

18、生日在同一天的概率为,故答案为.点睛:本题考查必然事件的定义以及必然事件的概率,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),有的把握认为选择科目与性别有关.详见解析(2)见解析【解析】(1)完善列联表,计算,再与临界值表进行比较得到答案.(2)这4名女生中选择历史的人数可为0,1,2,3,4.分别计算对应概率,得到分布列,再计算数学期望.【详解】(1)由题意,男生人数为,女生人数为,所以列联表为:选择“物理”选择“历史”总计男生451055女生252045总计7030100,.假设:选择科目与性别无关,所以的观测值,查表可得:,所以有的把握认为选择科

19、目与性别有关.(2)从45名女生中分层抽样抽9名女生,所以这9名女生中有5人选择物理,4人选择历史,9名女生中再选择4名女生,则这4名女生中选择历史的人数可为0,1,2,3,4.设事件发生概率为,则,.所以的分布列为:01234所以的数学期望.【点睛】本题考查了独立性检验,分布列,数学期望,意在考查学生的计算能力和应用能力.18、 (1);(2)-2.【解析】分析:(1)由在其定义域上是增函数,恒成立,转化为最值问题,然后进行分离参数求解新函数的单调性研究最值即可.(2)当时,得出函数的单调性和极值,然后根据在上存在两个零点,列出等价不等式求解即可.详解:(1)定义域为,在其定义域上是增函数,

20、实数的取值范围是.(2)当时,由得,由得,在处取得极大值,在处取得极小值,是一个零点,当,故只需且,的最大值为-2.点睛:考查导函数的单调性的应用以及零点问题,对于此类题型求参数的取值范围,优先要想到能否参变分离,然后研究最值即可,二对于零点问题则需研究函数图像和x轴交点的问题,数形结合解此类题是关键,属于较难题.19、 (1);(2).【解析】(1)根据题意对两边求导,再令得到结果;(2)对已知式子两边同时乘以得: 再令,求得答案.【详解】(1)依题意得对两边同时求导得: 令得: (2)由(1)得:两边同时乘以得: 对上式两边同时求导得即令,【点睛】本题以新定义为背景的创新题,考查二项式定和

21、导数知识的交会,要求读懂题意并会把知识迁移到新情境中进行问题解决,对综合能力要求较高.20、(1);(2)(百元)【解析】分析:(1)利用最小二乘法,求得,即看得到回归直线的方程;(2)由(1)代入时,求得的值,即可作出合理预测详解:(1),所以回归直线为 (2)当时,即第6天的营业额预计为(百元)点睛:本题主要考查了回归直线的方程的求解及应用,其中利用最小二乘法,准确求解的值是解得关键,着重考查了推理与运算能力21、(1)答案见解析(2)【解析】(1)设底面圆的半径为,圆锥的母线,因为圆锥的侧面展开图扇形弧长与圆锥的底面圆的周长相等,列出底面半径和关系式,即可证明:圆锥的母线与底面所成的角为.(2)因为圆锥的侧面积为,即可求得其母线长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论